
2025 STATE OF

A NEW VIEW OF MATURITY

Contents

03
Opening Letter

04
Executive Summary
Key Findings

07
15 Years of Special SoSS

09
State of Software Security
in 2025
Finding Flaws
Fixing Flaws
Fighting Debt

19
Comparing Software Security
Program Performance
Flaw Prevalence
Fix Capacity
Fix Speed
Debt Prevalence
Open-Source Debt

31
Conclusions & Recommendations

34
Methodology

2025 STATE OF SOFTWARE SECURITY: A NEW VIEW OF MATURITY

2

Our research drives our own software security measures, and this year, in our 15th volume of

this report, we seek to discover trends about where the most risk resides and what metrics

can be used to gauge progress against it. Plus, we want to compare program performance of

leading and lagging organizations using these metrics. The gaps between the top 25% and

bottom 25% are fascinating.

Ultimately, realizing progress and maturity in software security requires a risk-based

perspective. It takes focusing on the downside risks that matter in your context and the actions

that create continuous feedback loops to see and remediate risk in an ongoing fashion.

This is easier said than done, so we hope you find the insights and guidance in this report

as helpful as we have for improving security posture by adaptively securing mission-critical

software in the artificial intelligence (AI) era.

Sincerely,

Opening
letter

Niels Tanis
Senior Principal
Security Researcher

Sohail Iqbal
Chief Information
Security Officer

Chris Wysopal
Chief Security
Evangelist

2025 STATE OF SOFTWARE SECURITY: A NEW VIEW OF MATURITY

3

Executive
Summary

2025 STATE OF SOFTWARE SECURITY: A NEW VIEW OF MATURITY

4

In 2025, organizations face increasing

threats to their software. The exploitation of

vulnerabilities as the critical path to initiate

a breach “almost tripled (180% increase)

in the last year,” according to the Verizon

2024 Data Breach Investigations Report.

Meanwhile, security debt is rising, and the

attack surface is getting increasingly complex.

Plus, the rise of AI in software engineering,

especially with code generators, is transforming

the risk landscape. While many teams may

not openly admit to using AI, other indicators

of its presence and impact can be found.

We also can’t ignore the trends in the regulatory

space that are happening in the U.S. and the E.U.

In the EU, the Cyber Resilience Act went into

effect December 2024 and focuses especially

on enhancing the security of software. In the

U.S. 2020 Biden Cybersecurity Executive Order

emphasized cybersecurity prevention with

Zero Trust network architectures and Secure

by Design software. Secure by Design included

static code analysis, dynamic code analysis,

and supply chain security with SBOMs.

The U.S. Federal Government even required

vendors to attest to the way they developed

software as part of the acquisition process.

Understanding your software risk posture is

now a requirement. 2024 also gave us a new

U.S. Securities and Exchange Commission

(SEC) ruling which forces a more disciplined

approach to cybersecurity risk management.

We believe these regulatory factors

have contributed to some of the positive

trends we see in the data, such as the

OWASP Top 10 pass rate improving from

32% to 52% in the last five years.

However, our findings reveal that relying

on traditional patching alone isn’t enough.

Security teams must take a more strategic,

context-driven approach to managing the most

urgent and exploitable risks. This requires

seeing all risks in one place and focusing

on what matters most to an organization.

By prioritizing the most impactful risk

remediation actions and creating continuous

feedback loops for ongoing improvement,

organizations can more effectively

manage security risks over time.

I won't say
I'm using AI to
generate code…

…but there
will be signs.

2025 STATE OF SOFTWARE SECURITY: A NEW VIEW OF MATURITY

5

http://verizon.com/dbir
http://verizon.com/dbir
https://digital-strategy.ec.europa.eu/en/policies/cyber-resilience-act
https://www.cisa.gov/topics/cybersecurity-best-practices/executive-order-improving-nations-cybersecurity
https://www.sec.gov/newsroom/press-releases/2023-139
https://www.sec.gov/newsroom/press-releases/2023-139

Key findings
Good news first, the percentage
of apps passing the OWASP
Top 10 has increased 63% in
5 years (from 32% to 52%)

Half of organizations have
critical security debt (high
severity, high exploitability)...

The following table is a comparison of the top 25% and bottom 25% of
organizations against 5 key metrics we’ve observed indicate the maturity
of an organization at finding and fixing flaws in a way that systematically
drives down risk.

Below 43%

Above 10% of flaws monthly

Half of flaws in 5 weeks

<17% of apps

<15%

86% or more

<1% of flaws monthly

Half of flaws in over a year

>67% of apps

100%

FLAW PREVALENCE

FIX CAPACITY

FIX SPEED

SECURITY DEBT

OPEN-SOURCE
CRITICAL DEBT

LEADING ORGANIZATIONS LAGGING ORGANIZATIONS

Now the bad news...
the percentage
of apps with high
severity flaws has
increased by 181%...

2020 2025

...and 70% of it comes from
third party code and the
software supply chain.

89%11%

Third party code First party code

ALL SECURITY DEBT

70% 30%

Third party code First party code

CRITICAL SECURITY DEBT50%

32% 52%
171 days 252 days...and the average

number of days
to fix flaws has
increased 47%.

2020 2025

2020 2025

2025 STATE OF SOFTWARE SECURITY: A NEW VIEW OF MATURITY

6

15 Years
of Special SoSS

2025 STATE OF SOFTWARE SECURITY: A NEW VIEW OF MATURITY

7

As a pioneer of the AppSec space, we have

years of data to our advantage. This 2025

edition of the State of Software Security (SoSS)

report is our 15th volume. That makes it a bit

more special than the norm and creates an

opportunity to highlight a few long-term trends

before we dive into the latest facts and figures.

NUMBER OF
APPLICATIONS
TESTED

APPS WITH AT
LEAST ONE FLAW

OWASP TOP 10
PASS RATE

APPS WITH HIGH-
SEVERITY FLAWS

AVERAGE NUMBER
OF DAYS TO
FIX FLAWS

 Volume 1 Volume 10 Volume 15

1,591

85,000

457,000

59

171

252
72%

83%
80.3%

34%

20%

16%

23%

32%

52.3%

+455,409 +11.5% +127.4% -52.9% +193 DAYS Positive change since Vol 1
 Negative change since Vol 1

The sample size
for this study
has grown from
~1,600 applications
tested in 2009
to nearly half a
million in 2024!
That strengthens
the relevance
of the findings
in this report.

The fundamental
challenge hasn’t
changed over the
years: security flaws
are very common
across applications.
Even so, there are
signs of progress in
software security.

One aspect of
AppSec that’s
gotten worse over
iterations of the
SoSS is the time it
takes to fix flaws.
There are many
reasons for this,
but the ever-
growing scope and
complexity of the
software ecosystem
is a core issue. On
the bright side, we
do see organizations
reversing this trend.
We’ll share insights
gleaned from them
in this report.

The pass rate for
scans of OWASP’s
most critical risks
has more than
doubled since
Vol. 1. That means
less risk for us all!

The prevalence
of severe flaws in
SAST scans was cut
in half since Vol. 1.
However, when you
add in SCA (which
only started in the
last 5 years) and
DAST, the increase
in high-severity
flaws is 181% since
2020 (from 20%
with SAST only
in 2020 to 56.2%
in 2025 including
all scan types).

1. All statistics in this 15-year retrospective are based on static analysis (SAST) scans only because that’s consistent with early versions of the SoSS. You’ll see
that the “State of” section shows some very different results from the latest data drawn from all SAST, dynamic analysis (DAST), and software composition
analysis (SCA) scans (e.g., 56% of apps have high-severity flaws). Combined stats from all scan types is the norm for this report unless otherwise noted.

15 Years of Special SoSS

2025 STATE OF SOFTWARE SECURITY: A NEW VIEW OF MATURITY

8

https://www.veracode.com/products/binary-static-analysis-sast
https://www.veracode.com/products/dynamic-analysis-dast
https://www.veracode.com/products/software-composition-analysis
https://www.veracode.com/products/software-composition-analysis

State of
Software Security
in 2025

2025 STATE OF SOFTWARE SECURITY: A NEW VIEW OF MATURITY

9

At this point, everyone even remotely associated with software security
is familiar with phrases like “We need to shift left” and “Secure your
supply chain.” Those are worthy aspirations to be sure, but what, exactly,
do they entail, and where are we along the road to getting there?

The findings analyzed in this report were discovered via 1.8 million SAST, DAST, and SCA scans of

nearly half a million applications. In most cases, we show combined results from all three types

of tests (e.g., Figure 1) but occasionally feature one of them (e.g., SAST only in Figure 2). We’ve

designated charts based on specific scan types in the captions.

In a nutshell, shifting left and securing software supply chains involves finding and fixing

security flaws before they get rolled into production applications that place organizations

at risk. That process of finding and fixing flaws—and fighting the security debt that results

from not fixing them fast enough—happens to be something into which we have a unique

vantage point. And we’re glad to have the opportunity to once again share what we’ve

observed about the state of software security over the last year. Let’s get started!

2025 STATE OF SOFTWARE SECURITY: A NEW VIEW OF MATURITY

10

Any substantial codebase has bugs at some

point in its lifecycle. Some of those bugs

undermine the confidentiality, integrity, or

availability of the application, thereby placing

the organization at risk. Figure 1 reveals

that 80% of the applications tested over the

last year have at least one security flaw.

Figure 1 includes how we categorize flaws.

Just under half of all applications have flaws

ranked in the OWASP Top 10 as the 10 most

critical risks and over one-third contain those

considered most dangerous, per the CWE Top

25. Over half exhibit high or critical severity

flaws according to our own rating system.

ANY FLAWS

OWASP TOP 10

CWE TOP 25

HIGH SEVERITY

80.3%

47.7%

38.7%

56.2%

Finding flaws

FIGURE 1

Percent of
applications with
security flaws

2025 STATE OF SOFTWARE SECURITY: A NEW VIEW OF MATURITY

11

https://owasp.org/www-project-top-ten/
https://cwe.mitre.org/top25/
https://cwe.mitre.org/top25/
https://docs.veracode.com/r/review_severity_exploitability#veracode-finding-severities

While the level of flaws, and specifically high

severity flaws, remains high, we’re happy to

report that the proportion of applications

failing OWASP Top 10 and CWE Top 25 tests

is steadily declining. Of particular note,

the prevalence of high-severity flaws has

been cut in half over the last decade.

The prevalence of high-
severity flaws has been cut in
half over the last decade

FIGURE 2

Prevalence of
security flaws over
time (SAST only2)
Percent of applications

100%

80%

60%

40%

20%

0%

70.4%
68.6%

52.7%

16.2%

2016 2017 2018 2019 2020 2021 2022 2023 2024

ANY FLAWS

OWASP

SANS

HIGH
SEVERITY

2. Remember that findings in this report combine SAST, DAST, and SCA scans unless otherwise noted, as we’ve done here. Figures 1 and 2 differ so much
because the latter is based only on SAST scans.

2025 STATE OF SOFTWARE SECURITY: A NEW VIEW OF MATURITY

12

Information
Leakage

Command or Argument Injection

CRLF Injection

Authorization Issues

Format String

Code Quality

Cross-Site Scripting (XSS)

Authentication Issues

Code Injection

Error Handling

Buffer Overflow

Untrusted Search Path

Deployment Configuration

Cryptographic
Issues

Insufficient Input
Validation

Server Configuration

Session Fixation

SQL Injection

Potential Backdoor

Untrusted Initialization

Race Conditions

Credentials
Management

Directory Traversal

Numeric Errors

Buffer Management Errors

Encapsulation

Time and State

Insecure Dependencies

Other

API Abuse

A01: Broken Access Control

A02: Cryptographic Failures

A03: Injection

A04: Insecure Design
A05: Security
Misconfiguration

A06: Vulnerable and
Outdated Components

A07: Identification
and Authentication Failures

A08: Software and
Data Integrity Failures

A09: Security Logging
and Monitoring Failures

A10: Server Side
Request Forgery (SSRF)

0% 40%

10

100

0%60%20% 40% 60%20%

Dangerous Functions

The stats shared thus far are for any type of flaw.

That’s a good “thumb on the pulse” indicator of

the state of affairs in software security, but let’s

dig a little deeper. Figure 3 starts by digging

into the types of flaws detected over the last

year for CWE and OWASP categorizations.

Any flaw categories toward the right affect

large numbers of applications, and those

near the top occur frequently within the

codebase of those applications. Take note

of those in the upper-right danger zone, as

they represent the most common security

bugs crawling around your code.

FIGURE 3

Prevalence and intensity of CWE and OWASP flaws in applications

CWE CATEGORY OWASP TOP 10

Looking for more info on OWASP Top 10

flaws, how Veracode tests for them, and

what you can do to prevent them? Find out

more on our Knowledge Base article.

In
te

ns
it

y
(A

vg
 fi

nd
in

gs
 p

er
 a

pp
)

Percent of applications

2025 STATE OF SOFTWARE SECURITY: A NEW VIEW OF MATURITY

13

https://www.veracode.com/security/owasp-top-10

In our analysis, we use two ways of assessing

the overall risk posed by security flaws: severity

and exploitability. The former reflects the

potential impact on confidentiality, integrity,

and availability, and the latter rates the

likelihood or ease with which an attacker could

exploit a flaw. Figure 4 gives a breakdown

of all flaws according to these ratings.

Only a small minority of flaws (8.4%) rank

high for both severity and exploitability. We’ll

soon see that many organizations struggle

to fix flaws in a timely manner, so it’s all

the more important to prioritize those that

represent the highest risk. The “High-Risk

Region” in the upper-right corner of Figure 4

is a great place to focus remediation efforts.

FIGURE 4

Breakdown of flaws
according to severity
and exploitability LOW MEDIUM HIGH VERY HIGH

24.8% 57.6% 13.1% 4.4%

VERY LIKELY 17.3% 0.5% 10.1% 5.8% 0.9%

LIKELY 35.6% 1.7% 32.5% 1.2% 0.4%

NEUTRAL 37.7% 15.2% 13.2% 6.1% 3.1%

UNLIKELY 9.2% 7.3% 1.9% 0.0% 0.0%

VERY UNLIKELY 0.1% 0.1% 0.0% 0.0% 0.0%

High
risk
region

Pretend for a moment that your team began

writing flawless code—would that spell the end

of security issues plaguing your applications?

Unfortunately not, because your applications

include a plethora of open-source libraries

written by third parties that don’t share your

newfound ability to code perfectly. About 7

in 10 applications tested by Veracode contain

flaws in third-party code. For those keeping

score, that’s 6% higher than the flaw prevalence

for code written by your developers!

70%
of applications have
flaws in third-party code

FIGURE 5

Prevalence of flaws
in first-party vs.
third-party code
among applications

64%
of applications have
flaws in first-party code

E
xp

lo
it

ab
ili

ty

Severity

2025 STATE OF SOFTWARE SECURITY: A NEW VIEW OF MATURITY

14

FIGURE 6

Overall flaw
remediation
timeline based on
survival analysis

Fixing flaws

Finding flaws is easy these days; fixing them is

where the challenge lies. That’s why we’ve put

a lot of focus over the years on helping your

AppSec programs mature in speed and efficacy

of detection, prioritization, and remediation.

There are many ways to measure this, with

simple averages of flaw closures being the

most common. But that approach a) ignores

the persistence of unresolved flaws, and b)

isn’t appropriate for long-tailed distributions

like we see for remediation timelines.

Survival analysis offers the most realistic

depiction of flaw remediation timelines. A

flaw’s lifespan begins at discovery and ends

when scans confirm that it has been fixed.3

Figure 6 depicts the overall survival curve for

all types of flaws across all applications. You

can determine the survival rate at any point

based on where the x and y axes intersect

along the curve. For example, 28% of flaws

are still open two years after being discovered.

After five years, 9% of flaws linger on.

About 28% of overall flaws
extend beyond two years

Just 9% of overall flaws
extend beyond five years20%

40%

60%

80%

10 2 3 54

HALFLIFE
OF 252 DAYS

About 43% of overall flaws
turn into security debt

3. Another benefit of survival analysis is that it accounts for “censored data” that includes flaws still open (or, at least, not verified as closed)
when our measurement period ends.

P
ro

ba
bi

lit
y

fl
aw

 is
 s

ti
ll

op
en

 Age of open flaws (years)

2025 STATE OF SOFTWARE SECURITY: A NEW VIEW OF MATURITY

15

https://en.wikipedia.org/wiki/Survival_analysis

Half-life is a key statistic associated with

survival analysis, measuring the time it typically

takes to fix 50% of flaws. Overall, the half-life

of flaws stands at just over eight months. As you

may suspect, this statistic varies greatly among

different flaws, applications, and teams. Take,

for instance, the development languages in

Figure 7. The half-life for flaws in Android apps is

about one-fourth that of Java, and the 80% fixed

threshold is crossed almost two years sooner!

 20% closed 50% closed 80% closed

 20% closed 50% closed 80% closed

Figure 7 is a simplified view of fix times based on the same survival analysis technique. The

points mark the time to remediate 20%, 50% (half-life), and 80% of flaws in each category.

PHP

C++

JAVA

.NET

JAVASCRIPT

ANDROID

PYTHON

HIGH
SEVERITY

LOW/MEDIUM
SEVERITY

0 200 400 600 800 1000

0 200 400 600 800 1000

While we’d like to see the riskiest flaws fixed

ASAP, the data suggests that severity isn’t a

major driver of remediation for most teams.

The half-life of critical flaws is only about

a month shorter than that of less severe

findings. Circling back to the high-risk ratio

in Figure 4, prioritizing fixes of critical flaws

represents a huge opportunity for organizations

to efficiently reduce their exposure.

The shape of the survival curve in Figure 6

makes it clear that the process of fixing flaws

begins in earnest but tapers off over time.

The longer a flaw survives, the less likely it is

to be resolved. There are numerous reasons

for this phenomenon, but the result is that

applications gradually become bloated with old,

unresolved flaws, which we term security debt.

FIGURE 7

Flaw remediation
timelines among
application languages

FIGURE 8

Flaw remediation
timelines for
high-severity vs.
lower-severity flaws

Time to fix, days

Time to fix, days

31

49

227

307

800

969

39

26

245

243

891

1,059

30 276 1,111

22 198 849

14 163 730

7 74 356

9 116 640

2025 STATE OF SOFTWARE SECURITY: A NEW VIEW OF MATURITY

16

Security debt, a term that’s become common

parlance in this report, refers to flaws

that remain unfixed for over a year. How

common is this problem? Almost three-

quarters of organizations have accrued

some level of debt, according to Figure 9.

Moreover, half of them exhibit critical debt—the

risky combination of highly severe and long-

unresolved flaws. The flip side of this statistic

is that a quarter of organizations manage to

stay out of debt completely. Kudos to them.

Again, those wins need to be recognized.

74.2%
of organizations have
security debt

49.9%
of organizations have
critical security debt

Fighting debt

FIGURE 9

Prevalence of
security debt and
critical debt among
organizations

Apps with no flaws Apps with flaws but no debt Apps with security debt

6.1% 52.4% 41.5%

Security debt is also prevalent at the application

level. We found flaws constituting security

debt in about 42% of all actively tested

applications,4 which remains unchanged from

our last report. Sure, we’d like to see the debt

ratio start to fall, but at least it hasn’t gotten

worse. There’s solid evidence in our data that

organizations can drive down debt, and we’ve

collected insights on how yours can accomplish

that feat in the second half of this report.

FIGURE 10

Prevalence of security
debt across all
applications active
for at least one year

4. We filtered this to applications that have been actively tested for at least one year to allow for the accrual of debt.
If we remove that filter, 21% of all tested applications have security debt.

2025 STATE OF SOFTWARE SECURITY: A NEW VIEW OF MATURITY

17

It’s clear that some coding languages are

more predisposed to the accrual of security

debt than others. For this reason, more mature

organizations develop a language-based

strategy to fight security debt. This can be seen

in Figure 11, where VB6 and COBOL are polar

opposites in terms of the prevalence of security

debt. Granted, those aren’t today’s most popular

languages, but more common ones like .NET,

Java, and Python still show significant variation.

Not only does debt affect the code your

developers write, but it also creeps in via

open-source libraries imported into your

applications. Of all security debt we detected in

the last year, a relatively small percentage (11%)

stemmed from third-party code. But if we look

specifically at critical security debt, that ratio

jumps to 70%. Any debt fighting strategy that

doesn’t extend beyond your team’s own code

is not one that will ultimately be successful.

 Third party code First party code

ALL SECURITY DEBT

CRITICAL SECURITY DEBT

11.2%

69.9%

88.8%

30.1%

FIGURE 11

Prevalence of security debt by application development language

FIGURE 12

Proportion of security
debt and critical
debt in first-party
vs. third-party code
Percentage of flaws

PERCENTAGE OF APPS WITH SECURITY DEBT PERCENTAGE OF APPS WITH CRITICAL SECURITY DEBT

0% 20% 40% 60% 80%

Java

.NETJavaScript

Python
SCALA

C++

Apex

PHP

VB6

Ruby

PL/SQL

COBOL

iOS Bitcode

Android

RPG

GOLANG

Perl

VBScript

TSQL

ColdFusion

DART

0%

20%

40%

60%

80%

0% 20% 40%

Java

.NET

JavaScriptPython

SCALA

C++

Apex

PHP

VB6Ruby

PL/SQL

COBOL

iOS Bitcode
Android

RPG

GOLANG Perl

VBScript

TSQL

ColdFusionDART0%

5%

10%

15%

P
er

ce
nt

 o
f fl

aw
s

th
at

 a
re

 s
ec

ur
it

y
de

bt

P
er

ce
nt

 o
f fl

aw
s

th
at

 a
re

 c
ri

ti
ca

l s
ec

ur
it

y
de

bt

2025 STATE OF SOFTWARE SECURITY: A NEW VIEW OF MATURITY

18

Comparing
Software Security
Program Performance

2025 STATE OF SOFTWARE SECURITY: A NEW VIEW OF MATURITY

19

One of the charts from last year’s SOSS

that resonated with readers highlighted

the disparity among organizations in

managing security debt. We’ve reproduced

that chart below using the latest data.

Each box represents an anonymous

organization, and the internal rectangles

correspond to their active applications of

differing sizes. The color applied to those

applications measures the density of security

debt (red indicates higher density).

FIGURE 13

Distribution of security debt across applications in 20 example organizations

ORG 1 ORG 2 ORG 3 ORG 4 ORG 5

ORG 6 ORG 7 ORG 8 ORG 9 ORG 10

ORG 11 ORG 12 ORG 13 ORG 14 ORG 15

ORG 16 ORG 17 ORG 18 ORG 19 ORG 20

Flaw Density of Security Debt
1 in 1MB 1 in 100 kB 1 in 10kB

As illustrated, some organizations have almost

no security debt (Org 20), while others are

drowning in it (Org 3). Most fall somewhere in

between, with a mix of debt-free and debt-

ridden applications. These results raise the

question of what factors account for the

marked differences in how these organizations

manage security debt. Or, more to the point—

what can your team(s) do to achieve results

that look more like Org 20 than Org 3?

Answering that question begins with assessing

where your organization stands with respect

to factors that contribute to security debt. This

section supports that assessment with five

key software security metrics. We define each

metric, explain its importance, benchmark

performance, and share recommendations

from leading organizations and our experts.

2025 STATE OF SOFTWARE SECURITY: A NEW VIEW OF MATURITY

20

FIGURE 14

Overall flaw
prevalence among
organizations

What is it?
Flaw prevalence measures the percentage

of applications with at least one unresolved

security flaw in the latest scan or test.

This can be calculated as an overall

metric or for groups of applications,

development teams, or types of flaws.

Why does it matter?
The value of this metric isn’t in discovering

that most of your applications have security

flaws but rather in establishing a baseline

that can be tracked over time. Significant

changes—positive and negative—can be

reviewed to discern what might have caused

them, and those insights can then be used to

improve secure development processes.

Where do we rank?
We see in Figure 14 that the prevalence

of security flaws is quite high in most

organizations. The annotations offer stats

to dial in that general observation with

comparable metrics. The typical organization

has security flaws in about two-thirds of

its applications (median of 66%). Leading

organizations maintain a flaw prevalence

below 43%, while lagging firms struggle

with twice that proportion (86% or more).

Flaw prevalance

0%

4%

8%

12%

16%

20%

24%

28%

20% 30% 40% 50% 60% 70% 80% 90%

Leading organizations have flaws in
less than 43% of their applications

A typical organization has flaws
in about 66% of their applications

Lagging organizations have flaws
in over 86% of their applications

Percent of flaws that are security debt

P
er

ce
nt

ag
e

of
 O

rg
an

iz
at

io
ns

2025 STATE OF SOFTWARE SECURITY: A NEW VIEW OF MATURITY

21

FIGURE 15

High-severity flaw
prevalence among
organizations

FIGURE 16

Density of flaws
detected in
applications

With security bugs being fairly common

across all firms, a strong case can be made

that focusing on the riskiest flaws makes

for a better KPI. We see in Figure 15 that the

prevalence of high-severity security flaws is

more evenly distributed, with a median of 50%.

Top performers keep these risky flaws from

affecting no more than 20% of their applications.

10% 20% 30% 40% 50% 60% 70% 90%80%

2%

0%

4%

6%

1 in
100MB

1 in
10MB

1 in
1MB

1 in
100kB

1 in
10kB

1 in
1kB

1 in
100B

1 in
10B

47 FLAWS
PER MB

47 FLAWS
PER MB

What else should I know?
If you’d like to measure the prevalence of

flaws within applications in addition to across

them, flaw density is your metric. Flaw density

normalizes the number of flaws relative to the

size of the application to aid comparisons. A

typical application has about 47 flaws for every

1 MB, which, by itself, isn’t a very meaningful

statistic. Figure 16 shows the distribution

to aid benchmarking. The flaw density of

leading firms (20th percentile) is 19 times

lower than lagging firms (80th percentile).

Flaw density per application

NOTE: A high flaw prevalence isn’t necessarily a bad thing - especially for maturing programs. The more
comprehensive your AppSec program becomes and the more types of scans you use, the more flaws you will find.
This is a good thing. That said, you want to whittle down flaw prevalence over time through automations in the SDLC,
and discover what’s most severe, exploitable, and urgent to tackle first. More on this in the recommendations later.

Proportion of applications with critical flaws

P
er

ce
nt

ag
e

of
 O

rg
an

iz
at

io
ns

2025 STATE OF SOFTWARE SECURITY: A NEW VIEW OF MATURITY

22

Fix capacity

What is it?
Fix capacity calculates the number of security

flaws remediated in a given timeframe as

a percentage of all flaws detected for an

application. We typically measure it on a monthly

basis and then average those values over time.

Why does it matter?
It’s clear from the prior section that the volume

of security flaws can be overwhelming for many

organizations. Fixing them all isn’t feasible, or

even necessary, for most teams (at least not

immediately). But some teams, for whatever

reason, can consistently fix more than others.

This metric helps teams assess what proportion

of existing flaws they can reasonably expect to fix

in the next month or quarter and plan accordingly.

Where do we rank?
Per the chart on the left, the average monthly

fix capacity for most applications is less than

10% of all flaws. Some applications boast higher

rates, but they drop off quickly. The chart on

the right makes it easier to distinguish top

and bottom performers. Leading teams have

fix capacities above 10%, while the bottom

tier fixes just 1% of its flaws each month.

FIGURE 17

Average monthly
fix capacity across
applications

0 0

20%

40%

60%

80%

100%

2.5k

5k

7.5k

10%0% 20% 30% 50% 60% 80% 90%40% 70% 100% 0% 30% 60% 90%

0.0% of flaws

1.0% of flaws

2.0% of flaws

3.3% of flaws

4.4% of flaws

5.7%of flaws

7.6% of flaws

10.4% of flaws
16.5% of flaws

APPLICATIONS PCT OF APPS AT OR BELOW CAPACITY

Average monthly capacity Average monthly capacity

2025 STATE OF SOFTWARE SECURITY: A NEW VIEW OF MATURITY

23

FIGURE 18

Critical flaw ratio
among organizations

What else should I know?
Any discussion of fix capacity prompts

questions to the effect of, “Is it enough?” The

low capacities revealed in Figure 17 make it

clear the answer is “Not even close.” Keep in

mind that if you fix 10% of flaws per month,

you can’t expect to knock them all out in

10 months because new ones are added

(and found) in the development process.

Now, let’s rephrase the question to “Is it

enough to fix the riskiest flaws?” To answer

that, we first need to define what those

are. The upper-right quadrant of Figure 4

shared earlier in this report is a good place

to start. Just over 8% of all flaws are rated

high for both exploitability AND severity.

This critical risk ratio—which could very well

be its own metric—ranges from 0.2% to about

11% for the majority of organizations. That’s

much more in line with the fix capacities

observed in Figure 17, meaning this may be a

good focal point for organizations trying to

get the most bang for their flaw-fixing buck.

0.01% 0.10% 1.00% 10.00% 100.00%

3.1%

NOTE: Though the word “capacity” connotes an inherent limitation, it’s more of a choice than a ceiling. For
example, organizations choose how much effort goes into fixing flaws vs. adding features. They decide which
flaws need to be fixed and which don’t. They schedule deadlines for those fixes. All of these choices, and
many more, affect capacity as measured here. There’s another aspect of capacity which is increasing the
efficiency of the time spent fixing. If you’re measuring capacity as the number of hours developers spend
fixing, then capacity can remain unchanged but the number of fixes happening within that time increases
through flaws being fixed closer to where they were created or by utilizing AI to help with remediation.

Percent of CWE flaws with both high exploitability and high severity

2025 STATE OF SOFTWARE SECURITY: A NEW VIEW OF MATURITY

24

Fix speed

What is it?
Fix speed measures the rate at which flaws

are fixed across all active applications. As

discussed previously, we use survival analysis

as the basis for this metric. That said, we still

need a specific point on the survival curve (see

Figure 6) to use as the basis for comparisons.

The half-life of security flaws serves this

purpose well and is defined as the time it takes

to fix 50% of all security flaws discovered.

Why does it matter?
A strong argument can be made that how flaws

are handled once they’re detected says more

about an organization’s approach to software

security than how many flaws are introduced.

Slow or sporadic remediation suggests a lack

of urgency or capability (or both) on the part

of the organization to reduce exposure before

code is pushed into production applications.

Where do we rank?
The typical organization takes about five

months to fix half of all detected security

flaws (that’s the median). Leading teams

cross the halfway point in roughly five

weeks, while half-life spikes just above one

year among lagging organizations. It’s also

worth noting that there are a few firms well

outside that range, achieving half-lives as

short as 1 day and as long as 3.5 years!

As shown earlier in this report, fix speed

doesn’t shift dramatically based on flaw

severity. The median half-life of critical flaws

is still quite high at 3.7 months. Even leading

organizations only manage to move the needle

by about two weeks (half-life of three weeks

for critical flaws vs five weeks overall).

FIGURE 19

Fix speed (flaw
half-life) among
organizations

5 MONTHS

0.03 0.1 0.3 1 3 10 30

PAGE 27

Halflife of flaws per organization (months)

2025 STATE OF SOFTWARE SECURITY: A NEW VIEW OF MATURITY

25

FIGURE 20

Comparison of
remediation timelines
for teams that
use vs. don’t use
Security Labs

What else should I know?
In prior editions of this report, we’ve identified

several measurable factors that significantly

improve flaw remediation timelines. Frequent

testing of applications, using multiple types of

tests (SAST + DAST + SCA), and security training

for developers all correlate with faster fixes. And

the latter appears to be increasingly effective.

When we first measured this back in 2021,

we observed a two-month reduction in

flaw half-life among organizations that

made use of Veracode’s Security Labs.

That delta stood at about four months in the

2024 SOSS. The most recent data in Figure 20

reveals that teams using Security Labs boast

flaw half-lives that are 7.5 months shorter

than those not leveraging these resources!

1 20 3

5 MONTHS

12.6 MONTHS

0%

20%

40%

60%

80%

With Security Labs Training Without Security Labs Training

NOTE: Thanks to DevOps, organizations are experiencing new levels of speed and flexibility when it
comes to software development. But too often, speed comes at the cost of security. The faster teams
need to deliver code, the easier it is to downplay security or put it off for later. By speeding past security
in the development stage, however, organizations are often forced to exponentially slow down later
when the product goes to production and security flaws are discovered and must be fixed.

Age of open flaws (years)

P
ro

ba
bi

lit
y

fl
aw

 is
 s

ti
ll

op
en

2025 STATE OF SOFTWARE SECURITY: A NEW VIEW OF MATURITY

26

https://www.veracode.com/products/security-labs

Debt prevalence

What is it?
Security debt refers to security flaws that

persist for at least one year after discovery.

Debt prevalence measures the percentage

of applications that have accrued unresolved

flaws exceeding this threshold. All security

debt is bad, but some are worse than

others. Thus, we distinguish critical debt

as a particularly concerning class of debt

consisting of persistent high-severity flaws.

Why does it matter?
This metric helps assess whether security

debt is widespread across your applications

or limited to a small subset. A low value

suggests isolated or temporary issues, while

a higher debt ratio points to more pervasive

and persistent problems. Like massive debt

of a financial nature, the latter state is much

more challenging to address. Driving down

and eventually eliminating security debt—

especially critical debt—should be a top

priority for development and security teams.

Where do we rank?
Let’s start with the good news: Just over 10%

of organizations have no security debt. And

that’s not just because they don’t have any

flaws to start with—all of them do (see Figure

14). They’re clearly doing something right, and

we’ve shared insights gleaned from them along

with our security experts in the conclusion.

FIGURE 21

Security debt
prevalence among
organizations

10% 20%0% 30% 40% 50% 60% 70% 80% 90%

0%

2%

4%

A quarter of orgs with
security debt have
security debt in more
than 67% applications

10.6% of all orgs have no security
debt in any applications (not shown)

A quarter of orgs with
security debt have
security debt in less
than 17% applications

PAGE 29

Percent of organizations

Proportion of applications with security debt

2025 STATE OF SOFTWARE SECURITY: A NEW VIEW OF MATURITY

27

Among organizations that do exhibit some level

of security debt, a quarter restricts it to less

than 17% of their applications. If you can’t be

completely debt-free, that’s a good goal to shoot

for. Lagging organizations struggle with a debt

plaguing two-thirds of their applications or more.

Since critical security debt focuses on the

riskiest and most persistent flaws, some may

wish to track it as a standalone KPI. Figure 22

shows that about a quarter of organizations

have no critical debt at all, while a smaller

minority exhibit long-unresolved, high-severity

issues in over half of their applications.

FIGURE 22

Critical security debt
prevalence among
organizations

FIGURE 23

Distribution of
security debt
across application
age and size

0%

0%

3%

6%

9%

10% 20% 30% 40% 50% 60% 70% 80% 90%

25.7% of all orgs have no critical debt in any applications (not shown)

Half of organizations with critical
security debt have it in less than
19% of their applications

About one-in-ten firms exceed
a critical debt ratio of 57.1%

8.7%

10.9%

10.6%

8.3%

12.6%

12.2%

6.9%

12.3%

17.6%

SMALLER
(23.9%)

MEDIUM
(35.8%)

LARGER
(40.4%)

YOUNGER
(30.1%)

MIDDLE-AGED
(33.1%)

OLDER
(36.8%)

22.1%

7.9%

9.6%

11.5%

7.7%

10.9%

13.1%

6.8%

10.4%

SMALLER
(22.5%)

MEDIUM
(30.9%)

LARGER
(46.6%)

YOUNGER
(29.0%)

MIDDLE-AGED
(31.7%)

OLDER
(39.3%)

What else should I know?
If your organization is not one of the fortunate

few to be free of all security debt, it will help to

know where it tends to hide so that you can find

and eliminate it. Figure 23 breaks down security

debt based on the age and size of applications.

While debt exists across all categories, it’s

most concentrated in older, larger applications.

This finding hints at a relationship between

software security debt and broader forms of

tech debt that degrade productivity, efficiency,

and resilience in so many organizations.

Percent of organizations

ALL SECURITY DEBT CRITICAL SECURITY DEBT

NOTE: The charts above show the distribution of security debt among applications grouped into similar age
and size ranges. On the age scale, applications are considered younger if they’re between 1 and 2.1 years
old, middle between 2.1 and 3.4 years, and older after 3.4 years. Those are admittedly odd breakpoints, but
they roughly divide all applications into three equal bins. We took a similar approach for grouping small
(<250kB), medium (250kB-1.55MB), and large (1.55MB+) applications based on the size of their codebase.

Proportion of applications with security debt

2025 STATE OF SOFTWARE SECURITY: A NEW VIEW OF MATURITY

28

Open-source debt

What is it?
Open-source debt measures the

percentage of all security debt that exists

in third-party libraries and other software

developed outside the organization.

Why does it matter?
We think this is worth differentiating from

security debt because what’s required

to address flaws in third-party code is

very different from software written by

internal teams. For example, many open-

source libraries are dependent on a single

contributor who isn’t motivated to update

their code in a timeframe that’s consistent

with your risk tolerance and needs.

Where do we rank?
The proportion of security debt tied to open-

source code is actually fairly low. When it

comes to critical security debt, however, a very

different picture emerges in Figure 24. The

majority of an organization’s critical security

debt exists in third-party code. Teams on

the low end keep that proportion under 15%,

while over a quarter of organizations live in

the strange reality where ALL of their critical

debt is contained in open-source libraries!

FIGURE 24

Prevalence of critical
open-source debt
among organizations

11%1% 21% 31% 41% 51% 61% 71% 81% 91%

0%

10%

20%

30%

Three in ten organizations have
more than 96% of their critical
debt from third party code

PAGE 31

Percent of organizations

Percent of critical debt from third-party code

2025 STATE OF SOFTWARE SECURITY: A NEW VIEW OF MATURITY

29

FIGURE 25

Comparison of
remediation timelines
for first-party vs.
third-party code

What else should I know?
It generally takes longer for flaws to be

fixed in open-source code. The survival

analysis depicted in Figure 25 reveals that

the half-life of flaws in third-party code is

12 months, compared to 8 months in first-

party software. This supports the earlier

premise that mitigating debt in open-source

libraries requires a different strategy.

Curiously, there’s a shift in momentum before

the three-year mark. We suspect that first-

party flaws that haven’t been addressed by

this point have been risk-accepted or otherwise

back burnered, allowing the eventual updates

of open-source libraries to catch up.

20%

0%

40%

60%

80%

10 2 3 54

Security Debt

ABOUT 50% OF THIRD-PARTY FLAWS
TURN INTO SECURITY DEBT FLAWS

ABOUT 41% OF FIRST-PARTY FLAWS
TURN INTO SECURITY DEBT FLAWS

First-party flaws Third-party flaws

Half of first party
flaws are fixed in
the first 8 months
compared to 12
months for third
party flaws

Probability flaw is still open

NOTE: Open source flaws come in two types of dependencies: direct and transitive. When your configuration file
references a library, it’s considered a direct dependency. If those direct dependencies depend on other libraries,
they’re transitive. Direct dependencies are the easiest to fix. Things get trickier with transitive dependencies; it may
be that a fix will break some functionality in the direct library, meaning a slower and more difficult fix process. In
some cases there will be code refactoring which takes more time.

Age of open flaws (years)

2025 STATE OF SOFTWARE SECURITY: A NEW VIEW OF MATURITY

30

Conclusions
& Recommendations

2025 STATE OF SOFTWARE SECURITY: A NEW VIEW OF MATURITY

31

The new view of software security maturity is a two-fold
perspective that will have a significant impact on your
backlog. To mature your software security program efforts
in a way that aligns with business objectives, you need:

1. Visibility and integration across your SDLC to prevent net new flaws
through automation and feedback loops

The first part of the approach is about having visibility into your SDLC to minimize flaws at the

source. You gain visibility into the security of new applications through the automation of continual

scanning as developers write their code. This gives you visibility into what’s being introduced into

applications before they go into production. This is the most cost-effective time to remediate flaws,

and remediation is a great use case for responsible-by-design AI. Dealing with flaws as they come in

is one of the primary signs of a mature AppSec program.

Artificial Intelligence
Building a sustainable process for continual remediation is much more achievable thanks to recent

developments in AI. A large proportion of security debt stems from relatively simple flaws that AI can

effectively address at scale. The best teams use these capabilities to their advantage to boost fix

capacity and speed.

Policy
Policy is critical for the automation of remediation in the SDLC, because it directs what needs to be

fixed. The percentage of apps passing the OWASP Top 10 increasing 63% in 5 years indicates that

policy works to drive down risk in the SDLC, as many programs use OWASP as a guidance when

setting their policy.

Malicious Package Detection
Third-party flaws are also a huge contributor to the buildup of flaws that pile up into security debt.

Evaluating open-source libraries and avoiding those riddled with flaws before importing them into

your codebase can slash major issues across applications. A package manager firewall for analyzing,

detecting, and mitigating malicious packages before they leave the build is another way to use policy

to prevent risky components from ever being brought into an organization. All of this works together

to prevent net new flaws, but what about the ones that already exist in the debt that has piled up?

We know that the number of organizations with security debt has risen from 71% to 74%. Plus, attack

surface complexity has increased, and a third-party library that’s secure today may not be secure

tomorrow. What can be done to manage this risk? That’s why we’ve expanded the view of software

security maturity to incorporate a second part to the perspective: a single view of correlated findings.

2025 STATE OF SOFTWARE SECURITY: A NEW VIEW OF MATURITY

32

https://www.veracode.com/blog/secure-development/innovating-secure-software-supply-chains-veracode-acquires-phylum
https://www.veracode.com/blog/secure-development/innovating-secure-software-supply-chains-veracode-acquires-phylum

2. The ability to correlate and contextualize findings in a single view so you
can burn down the backlog based on context and reduce the most risk with
the least effort.

Since the average number of days to fix flaws has increased 47% in 5 years, a program that wants

to improve security posture and align with business objectives focuses on the findings that matter

in context. This is easier said than done due to the ever-growing scope and complexity of the

software ecosystem.

As the saying goes, if everything is a priority, nothing is a priority. Your AppSec tools are flooding you

with information about what’s severe, but you need a way to see what’s exploitable, reachable, and

urgent to help you prioritize further. To do this, you need visibility from an open and tool-agnostic

Application Security Posture Management solution.

Once you have this prioritization, we recommend allocating a percentage of a security champion’s

sprint capacity to your prioritized security debt and training them on how to make the fix or use AI (by

including training time in sprint points, too).

Modern software security is about remediating real risk which requires contextualizing more. We’ve

seen a lot of changes in 15 years of special SoSS, but the rapid proliferation of the attack surface is

one that has required us to add to our view of maturity, and we hope you’ll do the same.

2025 STATE OF SOFTWARE SECURITY: A NEW VIEW OF MATURITY

33

https://www.veracode.com/risk-manager/

Methodology

The report contains findings about applications that were subjected to static analysis, dynamic

analysis, software composition analysis, and/or manual penetration testing through Veracode’s cloud-

based platform. Specifically, the data comes from:

• 1.3M unique applications with 126.4M raw findings

• 107.4M findings identified via SAST scans

• 3.9M findings identified via DAST scans

• 15M findings identified via Software Composition Analysis

This data represents companies of all sizes, commercial software suppliers, software outsourcers,

and open-source projects.5 In most analyses, an application was counted only once, even if it was

submitted multiple times as vulnerabilities were remediated and new versions were uploaded. For

software composition analysis, each application is examined for third-party library information and

dependencies. These are generally collected through the application’s build system. Any library

dependencies are checked against a database of known flaws.

A Note on Mass Closures
While preparing the data for our analysis, we noticed several large single-day closure events. While

it’s not strange for a scan to discover that dozens, or even hundreds, of findings have been fixed

(50% of scans closed fewer than 2 findings), we did find it strange to see some applications closing

thousands of findings in a single scan. Upon further exploration, we found many of these to be invalid.

These large collections of flaws were both added and removed in single scans: Developers would

scan entire filesystems, invalid branches, or previous branches, and when they would rescan the valid

code, every finding not found again would be marked as “fixed.”

These mistakes had a large effect: The top 0.01% accounted for over 1 out of 10 of all the closed

findings. These “mass closure” events have significant effects on measuring flaw persistence and

time to remediation and were ultimately excluded from the analysis.

5. Here, we mean open-source developers who use Veracode tools on applications in the same way closed-source
developers do. This is distinct from the software composition analysis presented in the report.

2025 STATE OF SOFTWARE SECURITY: A NEW VIEW OF MATURITY

34

Copyright © 2025 Veracode, Inc. All rights reserved. Veracode is a registered
trademark of Veracode, Inc. in the United States and may be registered in certain
other jurisdictions. All other product names, brands or logos belong to their respective
holders. All other trademarks cited herein are property of their respective owners.

