
STATE OF
SOFTWARE
SECURITY
VOLUME 9

Volume 9 | State of Software Security | 3

Wherever they fall on that spectrum, all organizations race the

competitive clock to deploy and evolve their game-changing applications.

The question is, how well does application security keep up with it all?

This is the fundamental question Veracode asked this year as our team

examined the data for State of Software Security (SOSS) Volume 9.

For a long time now, SOSS has provided a reliable yardstick for the most

common vulnerabilities found in software, as well as how organizations

are measuring up to security industry benchmarks throughout the

software development lifecycle (SDLC). One thing we’ve always wanted to

understand better, though, is how quickly these organizations are actually

fixing flaws once they’ve been identified in application security scans.

This year, we turned our data analysis up a notch by working with the data scientists at Cyentia

Institute, so that we could gain better visibility into the factors that go into fixing flaws. Readers

will find valuable insight on how factors like flaw severity, business criticality of applications, and

exploitability of the flaws change the rate at which certain vulnerabilities are fixed.

In many ways, our deeper look into the data confirmed what many industry veterans recognize

intuitively: it takes time to fix security flaws. Contrary to what some security staffers might

believe, developers simply can’t wave a magic wand over the portfolio to fix the majority of

flaws in an instant, or even in a week. On top of that, there are other factors at play, including

QA, product release cycles, and other exigencies of delivering software to the real world.

However, our data presents hopeful glimpses at potential prioritizations and software

development methods that could help organizations reduce risk more quickly. At the top of

that list is the DevSecOps mentality, which tends to incorporate more frequent security scans,

incremental fixes, and faster rates of flaw closures into the SDLC. This year’s analysis shows a

very strong correlation between high rates of security scanning and lower long-term application

risks, which we believe presents a significant piece of evidence for the efficacy of DevSecOps.

Alongside that, we also offer up loads of valuable information about industry performance,

third-party component risks, and vulnerability trends. We believe that this body of work offers

security practitioners and developers alike valuable food for thought as they seek to improve

their application security stance in the coming year.

Sincerely, Chris Eng

The State of Software
Security Today

L E T T ER F ROM

 Chris Eng
Vice President of
Research at Veracode

We’re living in an era where business competitiveness hinges

on the speed and quality of software delivery. Some enterprises

are struggling to keep up. Others are thriving.

Executive Summary
The metrics presented in Veracode’s ninth iteration of the State of Software Security (SOSS) report

represent the industry’s most comprehensive set of application security benchmarks. Drawn from

real-world applications, we have analyzed the data created through customer testing on Veracode’s

application security platform. It represents the scans of more than 2 trillion lines of code across

700,000 scans, all performed over a 12-month period between April 1, 2017 and March 31, 2018.

As in previous versions of the report, we’ll provide insight into how well most applications adhere

to industry best practices, like OWASP Top 10 guidelines, and which types of vulnerabilities turn

up most in typical applications:

The pass rate
for OWASP
Top 10
compliance
on initial scan
declined for the
third year in a
row, down to

22.5%

Close rates
improved by
12 percentage
points this year
— customers
closed almost

70%
of vulnerabilities
they found.

apps contain at
least one vulnerable
component.

THE MOST COMMON VULNERABILITIES PRESENT IN APPLICATIONS REMAINED LARGELY THE SAME:

More than 85% of all applications have
at least one vulnerability in them; more than
13% have at least one critical severity flaw.

APPROXIMATELY

13%

85%

92%
C++

85.7%
 .NET

Cross-Site Scripting (XSS)
vulnerabilities are found
in nearly 50% of applications.

SQL injection flaws
are still present in nearly
one in three applications.

I N D U S T R Y B E S T P R A C T I C E A D H E R E N C E

87.5%
Java

Software is still
rife with vulnerable
components.

4 | State of Software Security | Volume 9

More than 70% of all
flaws remain 1 month
after discovery and
nearly 55% remain 3
months after discovery.

1 in 4 high and very high
severity flaws are not
addressed within 290
days of discovery.

Flaws persist 3.5x longer in
applications only scanned
1 to 3 times per year
compared to ones tested
7 to 12 times per year.

DevSecOps unicorns
exist, and they greatly
outperform their peers
in how quickly they fix
flaws; the most active
DevSecOps programs
fix flaws more than
11.5x faster than the
typical organization.

Infrastructure,
manufacturing, and
financial industries
have the hardest
time fully addressing
found flaws.

The data scientists at Cyentia Institute helped us to
tell this story around vulnerability fix behavior. We were
able to break down how different variables like flaw type,
severity, app criticality, and rate of scanning impact the
fix velocity and, conversely, the persistence of flaws
once they’ve been discovered:

The data analysis tells some very important stories for security

professionals and development teams alike about how they can take

measurable steps to reduce application risks. We hope our readers

are able to use all of these benchmarks to good effect.

V U L N E R A B I L I T Y F I X B E H AV I O R SAs we worked on the

report, we recognized

that our data could

provide even more

insight than the

standard benchmarks

we’ve always analyzed

in the past.

The most important

function of an

application security

program is how

effectively flaws are

fixed once they are

discovered. Our goal

this year was to really

delve deep into the

statistics that show

how long different

types of vulnerabilities

take to get fixed, and

to understand why

certain risks linger for

as long as they do.

Volume 9 | State of Software Security | 5

6 | State of Software Security | Volume 9

35.9%

33.5%

85.1%

84.9%

First Scan

Latest Scan

High or
Very High

Severity

Any
Severity

Percent of Applications with Findings
Source: Veracode SOSS Volume 9

Throughout the report, we share data from two types of scans. We commonly look at the

first scan of applications, which indicate testing of applications that haven’t previously gone

through the AppSec program. We also look at latest scan statistics, which includes tests of

applications that are currently in the middle of remediation and those applications for which

organizations have deemed they’ve fixed enough flaws and have stopped scanning any

further. Even on our customers’ latest scans, we found that one in three applications were

vulnerable to attack through high or very high severity flaws.

Breaking down the prevalence of flaws by vulnerability categories shows that all of the usual

suspects are present at roughly the same rate as in previous years. In fact, our top 10 most

prevalent flaw types have hardly budged in the past year.

Our annual SOSS data puts hard evidence on the table to explain

why so many security professionals experience anxiety when they

think about application security (AppSec). There is no way to sugar

coat it: the sheer volume of flaws and percentage of vulnerable apps

remain staggeringly high.

In examining the data for the percentage of applications under test by our customers in

the past year, we can see that the vast majority of them suffer from at least one vulnerability.

A significant number of these vulnerabilities are of high or very high severity.

Overall State of
Software Security

FIGURE 1 : APPS WITH AT LEAST ONE VULNERABILITY

Volume 9 | State of Software Security | 7

FIGURE 2 : PREVALENCE OF COMMON FLAW TYPES

FIGURE 3 : ADHERENCE TO INDUSTRY STANDARDS

19.9%
23.1%
25.2%

27.5%
27.6%

32.2%

46.6%
39.4%

43.7%

48.6%
40.3%

49.6%

43.0%
42.0%

40.9%

48.0%
42.2%

49.3%

59.5%
48.2%

53.1%

63.1%
56.2%

61.7%

63.7%
61.5%

64.9%

66.9%
65.8%

72.1%

2018
2017
2016

Encapsulation

SQL
Injection

Insufficient
Input

Validation

Cross-Site
Scripting

(XSS)

Credentials
Management

Directory
Traversal

CRLF
Injection

Code
Quality

Cryptographic
Issues

Information
Leakage

Percent of Applications
Source: Veracode SOSS Volume 9, n=(2018:25.7k)

That means that

organizations across the

board have made very

little headway to create

awareness within their

development organizations

about serious vulnerabilities,

like cryptographic flaws,

SQL injection, and cross-site

scripting. This is most likely

a result of organizations

struggling to embed security

best practices into their

SDLC, regardless of where

the standards are from. The

data shows that plainly here.

A historic look at OWASP

compliance on first scan

shows that this year’s pass

rate looks significantly

better than five years ago.

Unfortunately, the rate of

OWASP compliance hit

its peak in 2016. This year

marks the third in a row that

OWASP pass rates have

declined. One variable to

note is that OWASP updated

its Top 10 list in 2017. While

Veracode policy support

wasn’t fully updated until

the end of the data window

for SOSS Vol. 9, this could

have been a factor in the

pass rates declining this

year. Shifts in focus on

vulnerability types take a

while to be implemented.

22.5%

27.7%

36.8%

40.9%

First Scan

Latest Scan

OWASP Top 10

Sans Top 25

Passing Rate of Applications
Source: Veracode SOSS Volume 9

n=(First:30.8k, Latest:23.2k)

8 | State of Software Security | Volume 9

30.8%

69.2%

Still Open

Closed

Percent of Findings
Source: Veracode SOSS Volume 9, n=6.3m

Simply looking at the sheer volume of open to closed vulnerabilities only

gives us so much visibility into the true efficacy of customers’ AppSec

practices. The time it takes for attackers to come up with exploits for

newly discovered vulnerabilities is measured in hours or days. Which

means that it is crucial to measure both how many flaws organizations

close out every year, and how long it takes them to do so.

FIGURE 5 : FLAWS CLOSED VS OPEN

FIGURE 4 : OWASP YEAR-BY-YEAR COMPARISON

23% 77%

13% 87%

32.3% 67.7%

38.6% Passed 61.4% Did Not Pass

30.2% 69.8%

2010

2013

2015

2016

2017

Percentage of Applications Passing OWASP on First Scan
Source: Veracode SOSS Volume 9

The big question,
of course, is
how effective
are organizations
at closing
vulnerabilities
once they’ve
found them
through our
scans?

The good news here is that customers are closing more of their flaws

annually than in the past. Nearly 70% of flaws discovered in the past year

were closed through remediation or mitigation – that’s a jump of nearly

12 percentage points of closures since State of Software Security Vol. 8.

To put a finer point on this issue, the average velocity at which
organizations are fixing flaws isn’t just a mile marker for AppSec program
performance — it’s also a benchmark for measuring application risk.

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

0 100 200 300 400 500 600
Days From First Discovery

P
er

ce
nt

ag
e

o
f

F
la

w
s

C
lo

se
d

Source: Veracode SOSS Volume 9, n=6.3m

FIGURE 6: F IX VELOCITY

This year, we’ve taken a closer look at our customers’ fix rate, and when we look at the curve for the average

fix velocity from the first day of discovery, we see that it takes organizations a troubling amount of time

to address most of their flaws. One week after first discovery, organizations close out only about 15% of

vulnerabilities. In the first month, that closure reaches just under 30%. By the three-month mark, organizations

haven’t even made it halfway, closing only a little more than 45% of all flaws.

Volume 9 | State of Software Security | 9

10 | State of Software Security | Volume 9

75% of flaws persist
 after 21 days

50% of flaws persist
 after 121 days

25% of flaws persist
 after 472 days

Overall, 4.4m findings were closed out of 6.3m findings

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 100 200 300 400 500 600
Days From First Discovery

P
er

ce
nt

ag
e

o
f

O
p

en
 F

la
w

s

Source: Veracode SOSS Volume 9, n=6.3m

FIGURE 7: FLAW PERSISTENCE ANALYSIS

Let’s flip that curve and discuss the
probability that a vulnerability will
persist in an application over time.

We call this flaw
persistence analysis.

Visualizing the data in this way allows us to get a clearer view of how long risk lingers in any given application

under test. We’ve used flaw persistence as the basis for a lot of new investigation into this year’s data. We hope

this new view provides valuable insights into how customers prioritize the flaws they fix the fastest, as well as

offering evidence of what isn’t being fixed in a timely fashion, and how that impacts application risk exposure.

Volume 9 | State of Software Security | 11

One thing is certain: the sheer volume of vulnerabilities present in

most organizations’ application portfolios makes it necessary for them

to make daily tradeoffs between security, practicality, and speed.

There are just too many vulnerabilities for organizations to tackle

all at once, which means it requires smart prioritization to close the

riskiest vulnerabilities first.

Remediation and mitigation of found vulnerabilities are the ultimate objective of Veracode

customers, so we wanted to examine our data in a new way to give readers a better

understanding of how organizations prioritize their fix behavior.

Understanding how long it takes to close vulnerabilities under different circumstances not

only offers a glimpse into the current state of software security practices, but also highlights

how organizations can work to incrementally improve their own security.

Understanding Flaw Persistence Intervals
In the previous section, we shared what we call flaw persistence

analysis for all the applications our customers are testing. That

analysis presents a line curve to show the probability that a

vulnerability will remain in any given application over time,

and we denoted the points in time on the curve at which

25%, 50%, and 75% of flaws in a typical application are

usually fixed.

To better understand how long different kinds of

flaws tend to linger in applications, we are using these

percentiles to chart out what we call flaw persistence

intervals. Below, you will see the flaw persistence interval

for all applications, which corresponds to the flaw

persistence analysis curve shown in the previous section.

Focus on Fix

In green, you will see that it takes 21 days to close 25% of vulnerabilities.

In blue, the chart shows that it takes 121 days to close 50% of vulnerabilities.

In pink, the data shows that it takes 472 days to close 75% of vulnerabilities.

That means that, overall, one in four vulnerabilities remain open well over a

year after first discovery.

This overall flaw persistence interval serves as the benchmark against which we

will compare other intervals throughout the rest of the report. Readers should

note that the dotted lines in green, blue, and pink on this and subsequent charts

track to the plots on this first overall interval chart. This will provide visibility

into whether certain factors correlate to a speeding up or slowing down of the

rate of vulnerability closures compared to the overall norm. Interval plots to the

left of a corresponding line indicate a faster speed in reaching that particular

milestone, while plots to the right of the corresponding line indicate a slower

speed of remediation.

FIGURE 8 : OVERALL FLAW PERSISTENCE INTERVAL

10 100 1,00010 100 1,000

4.4m of 6.3m
21 121 47221 121 472

Overall

25% of findings are
closed within 21 days

50% of findings are
closed within 121 days

75% of findings are
closed within 472 days

Days From First Discovery
Source: Veracode SOSS Volume 9

One in four

vulnerabilities
remain
open well
over a year
after first
discovery.

12 | State of Software Security | Volume 9

Volume 9 | State of Software Security | 13

Flaw Severity
Let’s begin with one of the variables that application security teams

are most urged to target for speedy remediation: vulnerability severity.

The potential impact to the confidentiality, integrity, and availability of the application determines

the flaw severity of any given vulnerability. The highest severity flaws are less complicated to

attack, offer more opportunity for full application compromise, and are more likely to be remotely

exploitable — overall they tend to open up a wider attack blast radius.

SE VER I T Y SCOR E S ON OUR F I VE -POIN T SCAL E AR E R AT ED AS F OL L OWS:

Breaking down the flaw persistence intervals based on where vulnerabilities fall on this scale

shows that organizations are making a big push to fix their highest severity vulnerabilities first.

The first quartile of very high vulnerability closures is made more than a week sooner than

the norm, and organizations managed to start working on the last quartile of very high

vulnerabilities 237 days sooner than the norm. Though the intervals for burning down the first

25% and 50% of high severity flaws tracked with the norm, organizations managed to reach

closure on 75% of these high severity flaws more than 100 days sooner than the norm.

Severity
Score Description

5
Very High: The offending line or lines of code is a very serious weakness and
is an easy target for an attacker. The code should be modified immediately to
avoid potential attacks.

4 High: The offending line or lines of code have significant weakness, and the
code should be modified immediately to avoid potential attacks.

3
Medium: A weakness of average severity. These flaws should be fixed in high
assurance software. You should consider fixing this weakness after you fix the
very high and high flaws for medium assurance software.

2
Low: This is a low priority weakness that will have a small impact on the security
of the software. You should consider fixing these flaws for high assurance
software. Medium- and low-assurance software can ignore these flaws.

1
Very Low: Minor problems that some high assurance software may want to
be aware of. These flaws can be safely ignored in medium- and low-assurance
software. This year’s data found these flaws only in manual and dynamic scans
— static data analyzed in this section does not include flaws in this severity level.

0 Informational: Issues that have no impact on the security quality of the
application but which may be of interest to the reviewer.

14 | State of Software Security | Volume 9

79k/119k

1.1m/1.8m

3m/4.1m

173k/227k

52k/65k

79k/119k

1.1m/1.8m

3m/4.1m

173k/227k

52k/65k

17 109 272

37 181 655

17 104 415

21 107 349

14 64 206

17 109 272

37 181 655

17 104 415

21 107 349

14 64 206

10 100 1,00010 100 1,000

Severity: 0

Severity: 2

Severity: 3

Severity: 4

Severity: 5

25% closed 50% closed 75% closed

Days From First Discovery
Source: Veracode SOSS Volume 9

225k/292k

4.1m/6m

225k/292k

4.1m/6m

19

22

95

123

292

486

19

22

95

123

292

486

10 100 1,00010 100 1,000

Med-Info

High/V.High

25% closed 50% closed 75% closed

Days From First Discovery
Source: Veracode SOSS Volume 9

FIGURE 9 :

FLAW PERSISTENCE INTERVALS BY FLAW SEVERITY

FIGURE 10 :

SIMPLIFIED FLAW PERSISTENCE INTERVALS BY SEVERITY

In order to give a clearer picture of how severity prioritization is realistically

working out in most situations, we rolled flaw persistence intervals into

two severity groupings. The first group encompassed very high and high

vulnerabilities, and the second included everything below that.

This pair of intervals more clearly shows the correlation between the severity

of the vulnerability and the speed of closure. Organizations hit the three-

quarters-closed mark about 57% sooner for high and very high vulnerabilities

than for their less severe counterparts.

On the flip side,
low severity
flaws were
attended to at
a significantly
slower rate than
the average
speed of
closure. It took
organizations
an average of
604 days to
close three-
quarters of these
weaknesses.

High and Very High flaws are
addressed at a faster rate

Low to Informational flaws are
addressed at a slower rate

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 100 200 300
Days From First Discovery

P
er

ce
nt

ag
e

o
f

O
p

en
 F

la
w

s

Source: Veracode SOSS Volume 9

FIGURE 11 : SEVERITY FLAW PERSISTENCE ANALYSIS

If we translate the numbers into flaw persistence analysis curves, you can see even

more clearly what the persistence delta looks like between the two severity clusters

from the date of first discovery onward.

Organizations hit the three-quarters-closed mark about
sooner for high and very high vulnerabilities
than for their less severe counterparts.57%

Volume 9 | State of Software Security | 15

16 | State of Software Security | Volume 9

18k/23k

682k/1.1m

1.4m/2.1m

1.8m/2.5m

442k/669k

18k/23k

682k/1.1m

1.4m/2.1m

1.8m/2.5m

442k/669k

21

41

28

13

34

102

227

142

75

154

333

840

468

326

484

21

41

28

13

34

102

227

142

75

154

333

840

468

326

484

10 100 1,00010 100 1,000

Exploitability: -2

Exploitability: -1

Exploitability: 0

Exploitability: 1

Exploitability: 2

25% closed 50% closed 75% closed

Days From First Discovery
Source: Veracode SOSS Volume 9

FIGURE 12 :

FLAW PERSISTENCE INTERVALS BY EXPLOITABILITY

VERACODE’S FLAW
EXPLOITABILITY
SCORING

2 Very likely

1 Likely

0 Neither likely
nor unlikely

-1 Unlikely

-2 Very unlikely

Exploitability adds another dimension to the measurement of the seriousness

of a flaw. While severity scoring looks at a flaw through the lens of its potential

overall impact on the application, exploitability specifically estimates the

likelihood a flaw will be attacked based on the ease with which exploits can be

executed. It is important to look at exploitability ratings to specifically prioritize

those vulnerabilities that are both high impact and trivial to take advantage of.

For example, a high severity flaw with a very high exploitability score introduces

a lot more risk than a high severity flaw with a very low exploitability score.

When we examine the flaw persistence intervals based on exploitability, there are

a few surprises that jump out at us. While the flaws judged as likely to be exploited

with a score of “Exploitability: 1” have a sped-up flaw persistence interval relative to

the average and to other lower exploitability scores, the next higher exploitability

category does not. Those flaws ranked very likely to be exploited with an

“Exploitability: 2” rating actually trail the average time for closure in all three of the

flaw persistence intervals. It takes 40 days longer to close out 75% of these highly

exploitable flaws than it does the average vulnerability.

Exploitability

In order to get a clearer picture on how exploitability impacts remediation

priorities within pools of similar severity flaws, we created additional flaw

persistence intervals that analyzed different combinations of severity and

exploitability. In these instances, we did see a few differentiations we’d expect

to see. For example, for Severity 2 and 3 flaws, they were getting to the last

quartile of open flaws a whopping 214 days faster when they were highly

exploitable. But exploitability made a much less dramatic difference within

the pool of Severity 4 and 5 vulnerabilities.

Volume 9 | State of Software Security | 17

FIGURE 13 :

FLAW PERSISTENCE INTERVAL BY SEVERITY AND EXPLOITABILITY

107k/149k

118k/143k

2.2m/3m

2m/3m

107k/149k

118k/143k

2.2m/3m

2m/3m

21

16

14

32

91

97

87

169

286

304

365

579

21

16

14

32

91

97

87

169

286

304

365

579

10 100 1,00010 100 1,000

Sev:Med-Low,
Exp:Med-Low

Sev:Med-Low,
Exp:High

Sev:High/V.High,
Exp:Med-Low

Sev:High/V.High,
Exp:High

25% closed 50% closed 75% closed

Days From First Discovery
Source: Veracode SOSS Volume 9

First of all, exploitability is more of a secondary prioritization metric than severity.

Veracode typically recommends that developers use exploitability scoring as a

way to sift through a cluster of vulnerabilities of a similar severity and ease of fix,

putting the most exploitable of those on the top of that particular cluster.

We thought it could be that there were a number of highly exploitable but

lower severity flaws that were skewing the flaw persistence intervals for this

group – particularly considering that this category has a much smaller sample

size than the other lower exploitability scores.

It could be that we’re seeing another variable arising, namely the difficulty of

remediation. The most severe and exploitable flaws are vulnerabilities deeply

embedded in the underlying architecture of an application and require more

complex remediation work. As such, they’re much more difficult to fix and that

could be what is extending flaw persistence in a population of flaws that should

be at the very top of the priority list for remediation.

It is hard to tell exactly what is going on here with this
counterintuitive result, but there are a few possibilities.

18 | State of Software Security | Volume 9

27.3%

32.3%

25.6%

28.6%

15.4%

26.6%

27.4%

30.4%

20.9%

21.5%

First Scan

Latest Scan

1 - Very Low

2 - Low

3 - Medium

4 - High

5 - Very High

Passing Rate of Applications

C
ri

ti
c
a
lit

y
 o

f
A

p
p

lic
a
ti

o
n

Source: Veracode SOSS Volume 9, n=53.4k

In a textbook scenario, the properties of the

vulnerability itself shouldn’t be the only factors driving

fix prioritization. A big part of the risk equation is the

value of a particular asset at risk. As such, organizations

should — in theory — also be weighting the business

criticality of an affected application into their

prioritization calculations.

However, when we looked at the data, we discovered

that this is not happening to a very large degree. For

example, a distribution of first scan and latest scan pass

rates showed that the most important applications

passed at a lower rate than other applications, and they

didn’t even show a higher improvement rate between

first and latest scan compared to the others.

FIGURE 14 : F IRST SCAN VS LATEST SCAN BY CRITICALITY OF APP

Application Criticality

FIGURE 15 : FLAW PERSISTENCE INTERVAL BY APPLICATION BUSINESS CRITICALITY

What’s more, the flaws in very

high criticality apps are actually

fixed more slowly than the

average application. It takes well

over two months longer to fix

75% of vulnerabilities in these

mission-critical apps than it

takes to reach the same mark

in the average application.

22k/26k

94k/224k

1.1m/1.5m

1.8m/2.5m

1.3m/1.9m

22k/26k

94k/224k

1.1m/1.5m

1.8m/2.5m

1.3m/1.9m

3

46

20

21

24

64

336

108

117

132

336

889

447

424

526

3

46

20

21

24

64

336

108

117

132

336

889

447

424

526

10 100 1,00010 100 1,000

1 - Very Low

2 - Low

3 - Medium

4 - High

5 - Very High

25% closed 50% closed 75% closed

Days From First Discovery
Source: Veracode SOSS Volume 9

The data for flaw persistence

based on business criticality

further bore out our conclusion

that organizations aren’t using

business criticality as a very

strong prioritization variable.

While vulnerabilities in low

criticality applications do trail all

others in speed to reach all three

closure percentiles, the flaws in

very low criticality applications

are addressed the quickest. This

is a quirk of the data that we’re

trying to understand — it could

be that the small sample size is

adding greater variability into

the findings.

Now, it is likely that the stability concerns and change management policies on mission-critical apps are much more

stringent, which is likely impacting how quickly teams can get remediations deployed. But the lesson here is that these

unfixed flaws are leaving extraordinary windows of risk open within organizations’ most valuable application assets.

Volume 9 | State of Software Security | 19

Avg.

Sev:High
Crit:High

Sev:High
Crit:Med-Low

Sev:Med-Low
Crit:High

Sev:Med-Low
Crit:Med-Low

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

0 100 200 300 400
Days From First Discovery

P
e
rc

e
n

ta
g

e
 o

f
O

p
e
n

 F
la

w
s

Source: Veracode SOSS Volume 9

FIGURE 17: FLAW PERSISTENCE ANALYSIS BY CRITICALITY AND SEVERITY

FIGURE 16: FLAW PERSISTENCE INTERVAL BY CRITICALITY AND SEVERITY

If we compare the flaw

persistence analysis curves

for groups paired by different

criticality and severity scores,

we see that they’re more likely

to be pulled by the severity of

the flaw than the criticality of

the app.

166k/207k

54k/78k

2.9m/4.2m

1.1m/1.6m

166k/207k

54k/78k

2.9m/4.2m

1.1m/1.6m

20

20

22

21

91

105

125

119

286

368

478

497

20

20

22

21

91

105

125

119

286

368

478

497

10 100 1,00010 100 1,000

Sev:Med-Low,
Crit:High

Sev:Med-Low,
Crit:Med-Low

Sev:High,
Crit:Med-Low

Sev:High,
Crit:High

25% closed 50% closed 75% closed

Days From First Discovery
Source: Veracode SOSS Volume 9

The one silver lining to this occurs as organizations get toward the end of flaw burndown. It does seem like some

prioritization kicks in to differentiate between the lingering highest vulnerability flaws that need to be addressed.

Around the six-month mark, you can see a clear difference between the highest severity flaws in highly critical

apps versus less important apps.

Drilling down further into the data, we can see that the disregard for
app criticality mostly plays out even when filtered by severity of flaw.

Regional Breakouts
While the Americas

— particularly the

U.S. — dominate the

sample sizes, we were

able to glean some

insights into variations

in flaw persistence

based on regional

differences.

FIGURE 18 : FLAW PERSISTENCE INTERVAL BY REGION

Unsurprisingly, vulnerabilities addressed by organizations in the Americas

mostly tracked to the overall average. This was inevitable due to the fact that

the large volume of these vulnerabilities weighted the average.

However, one thing to note is that companies in the Americas did outperform

the average on the tail-end of the vulnerability burndown process. This

indicates how badly companies in APAC and EMEA trailed when it came to

getting to their last quartile of open vulnerabilities.

In examining the APAC companies’ speed of closure, it is interesting to find that

these firms jumped on their first chunk of flaws very quickly. It only took APAC

companies about a week to close out 25% of their flaws. However, the spread

between reaching that first milestone and eventually resolving 75% of flaws

was enormous. It took APAC companies well over two years to start working

on their last quartile of open vulnerabilities.

Meanwhile, EMEA companies lagged behind the average significantly at

every milepost of the flaw persistence intervals. It took more than double

the average time for EMEA organizations to close out three-

quarters of their open vulnerabilities. Troublingly, 25%

of vulnerabilities persisted more than two-

and-a-half years after discovery.

3.5m/5m

62k/98k

626k/970k

3.5m/5m

62k/98k

626k/970k

22

8

28

112

92

206

413

869

970

22

8

28

112

92

206

413

869

970

10 100 1,00010 100 1,000

EMEA

Americas

APAC

25% closed 50% closed 75% closed

Days From First Discovery
Source: Veracode SOSS Volume 9

20 | State of Software Security | Volume 9

17k/32k

142k/189k

300k/489k

22k/29k

38k/43k

69k/130k

204k/284k

3.4m/4.8m

17k/32k

142k/189k

300k/489k

22k/29k

38k/43k

69k/130k

204k/284k

3.4m/4.8m

28

22

46

7

14

72

11

22

366

136

333

59

67

647

72

112

1629

406

1256

376

148

1446

304

417

28

22

46

7

14

72

11

22

366

136

333

59

67

647

72

112

1629

406

1256

376

148

1446

304

417

10 100 1,00010 100 1,000

Switzerland

Germany

Australia

Canada

United States

United Kingdom

India

Netherlands

25% closed 50% closed 75% closed

Days From First Discovery
Source: Veracode SOSS Volume 9

Further breaking these persistence intervals out by country,

we did find some regional outliers worth noting.

FIGURE 19 : FLAW PERSISTENCE INTERVAL BY COUNTRY

For example, companies in India, the United Kingdom, and the Netherlands

greatly outperformed their regional counterparts in speed of fix.

In particular, the rapid rate of remediation evidenced by Dutch companies remain a promising bright

spot amid the worrying time it took their EMEA counterparts to fix the same percentage of flaws.

Dutch firms managed to start working on their last quartile of open flaws within five months of

discovery — that is the fastest rate worldwide and three times as fast as the average application.

That sense of urgency was contrasted by outliers on the other end of

the spectrum in Germany and Switzerland. It took German firms

more than three years to reach their final quartile of open

vulnerabilities, and it took Swiss organizations nearly

four years to reach the same milepost.

Volume 9 | State of Software Security | 21

Industry Breakouts
We will dive into industry benchmarks more fully later on in

the report, but we would be remiss in discussing overall flaw

persistence trends without touching on industry breakouts.

FIGURE 20: FLAW PERSISTENCE INTERVALS BY INDUSTRY

Healthcare organizations are remediating at the most rapid rate at every interval

compared to their peers. It takes just a little over seven months for healthcare

organizations to reach the final quartile of open vulnerabilities, about eight months

sooner than it takes the average organization to reach the same landmark. Similarly, retail

and technology firms outpace the average speed of fix at every interval.

While infrastructure firms address the first half of their open flaws more rapidly than

average, it takes them significantly more time to get to the second half. At least one

in four vulnerabilities are left open almost three years after first discovery within

infrastructure industry apps. This likely reflects the great difficulty that these firms face

in fixing many applications within critical systems that have extremely tight thresholds

for uptime and availability.

In a mirror to infrastructure situations, government and education firms have a reverse

situation. They’re right about on par with the average time to address the first half of

their open flaws, but they start to pick up speed once they get over that hump. This

could be an indication of bureaucratic inertia that may impede initial progress, but

which is likely overcome once security teams and developers cut through the red tape.

1.9m/2.9m

99k/133k

122k/144k

26k/42k

328k/478k

388k/538k

274k/320k

1.2m/1.7m

1.9m/2.9m

99k/133k

122k/144k

26k/42k

328k/478k

388k/538k

274k/320k

1.2m/1.7m

29

21

6

15

39

12

14

20

163

110

43

82

196

64

64

105

574

345

216

1180

903

238

206

349

29

21

6

15

39

12

14

20

163

110

43

82

196

64

64

105

574

345

216

1180

903

238

206

349

10 100 1,00010 100 1,000

Manufacturing

Financials

Infrastructure

Gov/Edu

Technology

Retail

Other

Healthcare

25% closed 50% closed 75% closed

Days From First Discovery
Source: Veracode SOSS Volume 9

22 | State of Software Security | Volume 9

Remediation vs Mitigation
As we ruminate over the speed at which organizations

are addressing vulnerabilities, it’s worth taking a quick

look at how these flaws are being closed out. In tracking

flaw closures, there are two main categories — remediation

and mitigation.

FIGURE 21 : MITIGATION VS. REMEDIATION

4.3%

43.9%

51.9%

Mitigated

Unresolved

Fixed

Percent of Findings
Source: Veracode SOSS Volume 9, n=484k

DEFINITIONS

Remediating
a flaw:
Changing
the code to
address the risk

Mitigating
a flaw:
Documenting
a compensating
control that
adequately
addresses the
risk associated
with it

As we see here, a little over half of all flaws are fixed, and just under 44% of

them are left open. Then there’s a small sliver left over that are not closed out

with a code fix but instead through mitigating factors noted by developers.

This could be because developers deem them false positives, because

they believe other elements of the application’s design or its environment

counterbalance the risk of the flagged vulnerability.

The good news here is that developers are clearly taking

static application security tests seriously — they’re not just

blindly rejecting findings as false positives and moving on.

In fact, all mitigation reasons account for a little more than

4% of vulnerability closures.

Volume 9 | State of Software Security | 23

<0.1%

<0.1%

<0.1%

0.1%

0.1%

1.1%

2.8%

43.9%

51.9%

Remediated by User

Proposed by Custom Cleansing Function

Mitigate by Network Environment

Mitigate by OS Environment

Reviewed - No Action Taken

Potential False Positive

Mitigate by Design

Unresolved

Fixed

Percent of Findings
Source: Veracode SOSS Volume 9, n=484k

Concluding Thoughts on Fixing Flaws
One final thought on the prioritization of how organizations fix flaws is that the flaw persistence intervals above

do not really delve into the impact of policy on timing. Usually, individual organizational policies will drive our

customers’ fix behavior above all other factors, and each of those policy sets are unique. Based on our analysis,

many policies clearly take into account flaw severity. Some might take into account exploitability, others

might emphasize certain vulnerability categories, and a few others will dictate how fixes are made to specific

applications based on what they do for the business.

At the end of the day, an individual developer is going to be looking at his or her organization’s policy to chart the

plan of attack for closing out vulnerabilities. For any given customer, those policies may be based on some of the

variables we laid out here, or they could be based on other factors unique to their organization or industry.

The takeaway for the data laid out in this section of SOSS Vol. 9 is that organizations need to start thinking

more critically about the factors that impact what they fix first. We called the charts laid out in this analysis flaw

persistence intervals because we want to emphasize that they’re offering a very detailed picture of the time of

exposure faced by allowing these clusters of open vulnerabilities to linger.

This chart shows that potential

false positives aren’t even the first

reason named by developers for a

close by mitigation. In the majority

of instances, developers accept

that static analysis may be finding

something in the application, but

they disagree with the analysis

on the assumptions made about

the design or the environment to

flag something as a flaw. This is

where mitigation by design or by

environment kicks in. While some

of the assumptions developers are

making to deem a flaw as mitigated

may be up for debate in terms

of how sound they really are, the

good news is that these mitigations

make up such a slim number of

flaw closures. This should give

organizations peace of mind that

when a flaw is closed, it is either

fixed or closed for good reasons.

FIGURE 22 : DEVELOPER MITIGATION REASONS

If we zoom in on just the vulnerabilities closed by mitigation,

we can get an even clearer picture of the reasons noted by

developers for closing out flaws without altering code.

24 | State of Software Security | Volume 9

Volume 9 | State of Software Security | 25

6.9%

7.7%

7.9%

8.1%

9.0%

9.5%

10.9%

12.3%

13.7%

19.4%

19.9%

27.5%

43.0%

46.6%

48.0%

48.6%

59.5%

63.1%

63.7%

66.9%

Untrusted Search Path
Error Handling
Code Injection

Race Conditions
Potential Backdoor

Session Fixation
Untrusted Initialization

API Abuse
Command or Argument Injection

Time and State
Encapsulation
SQL Injection

Credentials Management
Insufficient Input Validation

Directory Traversal
Cross-Site Scripting (XSS)

CRLF Injection
Code Quality

Cryptographic Issues
Information Leakage

Percent of Applications

Source: Veracode SOSS Volume 9, n=25,790

Other heavy-hitters also showed up in statistically significant populations of software. For

example, we discovered highly exploitable cross-site scripting flaws in nearly 49% of applications,

and SQL injection appeared nearly as much as ever, showing up in almost 28% of tested software.

Overall Category Numbers
In analyzing the data, we found that the most common types of

vulnerabilities cropped up in largely the same proportions as last

year. The top four vulnerability categories presented themselves

in more than half of all tested applications. This means the majority

of applications suffered from information leakage, cryptographic

problems, poor code quality, and CRLF Injection.

Common Vulnerability Types

FIGURE 23: 20 MOST COMMON VULNERABILITY CATEGORIES

26 | State of Software Security | Volume 9

One thing to keep in mind is that this particular distribution of common

vulnerabilities was found through Static Analysis Security Testing (SAST),

which examines code in a non-runtime environment. We’ve largely focused

our data analysis on SAST results because we believe it is more statistically

reflective of the high-level efficacy of AppSec during the SDLC. Static testing

is more commonly done earlier in the SDLC, whereas dynamic tests are done

later in the lifecycle for a variety of reasons, including the length of time it

takes to test dynamically.

However, we should note that there are some differences

in the occurrence of flaw types when we look at the

prevalence in results for Dynamic Analysis Security Testing

(DAST), which examines the application as it executes in

a runtime environment.

Dynamic testing offers a totally different testing methodology and

environment, so it shouldn’t be surprising that it’s stronger at dredging up

different classes of flaws. The top 10 common vulnerabilities uncovered by

DAST are still heavy on flaws like information leakage and cryptographic

issues, but it also shows a higher prevalence of server configuration and

deployment configuration flaws. These are flaws that simply can’t be found

prior to code execution, but which offer a very viable path to attack. As such,

they still need to be on the AppSec radar.

FIGURE 24: TOP 10 VULNERABILITY CATEGORIES
BY DYNAMIC APPLICATION SECURITY TESTING

1.7%

2.0%

2.5%

3.8%

8.7%

8.9%

33.7%

50.0%

72.3%

88.8%

Authentication Issues

SQL Injection

Session Fixation

Credentials Management

Cross-Site Scripting (XSS)

Encapsulation

Deployment Configuration

Cryptographic Issues

Information Leakage

Server Configuration

Percent of Applications

Source: Veracode SOSS Volume 9, n=22,558

Volume 9 | State of Software Security | 27

A low severity information leakage flaw could provide
just the right amount of system knowledge an attacker
needs to leverage a vulnerability that might otherwise
be difficult to exploit.

As we examine the top vulnerabilities, it is also crucial to consider that not

every flaw type is created equal. It would be myopic to make judgements on

risk simply by looking at flaw categories by volume of vulnerabilities present.

For example, code quality flaws may be present in twice as many applications

as SQL injection vulnerabilities, but that does not mean they pose twice

as much risk as SQLi to the state of software security. Probably quite the

opposite. As a class, SQLi tends to present flaws of a much higher severity

and exploitability than code quality vulnerabilities.

Once organizations dig into individual vulnerabilities, they’ll see that

each of these category types exhibit different envelopes of risk based on

exploitability and severity ratings. That must be taken into account when

setting remediation priorities. However, even exploitability and severity

metrics are not perfect indications of how to prioritize remediation of

different flaw categories. Certain categories that may have relatively low

measurements of severity or exploitability could hold significant risk in many

situations — particularly when chained to other flaws. The key thing to keep

in mind is context.

A low severity information leakage flaw could provide just the right amount

of system knowledge an attacker needs to leverage a vulnerability that might

otherwise be difficult to exploit. Or a low severity credentials management

flaw, which might not be considered very dangerous, could hand the attackers

the keys to an account that could be used to attack more serious flaws

elsewhere in the software.

Volume 9 | State of Software Security | 27

28 | State of Software Security | Volume 9

Avg.

Information Leakage

Encapsulation

Cross-Site Scripting

Cryptographic
Issues

Code Quality

CRLF Injection

Directory
Traversal

Credentials
Management Insu�cient

Input
Validation

SQLi

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

0 100 200 300 400
Days From First Discovery

P
er

ce
nt

ag
e

o
f

O
p

en
 F

la
w

s

Source: Veracode SOSS Volume 9

FIGURE 25: FLAW PERSISTENCE ANALYSIS

As we examine the flaw persistence of common flaw categories, we can easily see that each of these tracked flaw

categories presents its own unique remediation challenges. Some of the deltas here in flaw persistence are simply

reflecting the difference in severity of each flaw type. But certain flaw categories are also easier to fix than others,

contributing to the sometimes wide differences in the time it takes to address some categories over others.

Toxic combinations of flaws are not necessarily reflected in severity or exploitability

ratings. In the real world, attack chaining matters. Being mindful of that reality adds

further texture to the idea of flaw persistence. The more vulnerabilities organizations

leave open to accumulate alongside other persistent flaws, the more attack surface

the bad guys have to work with when stringing together their exploits.

Volume 9 | State of Software Security | 29

Prevalence
Rank

1
Prevalence

67%
of applications

Remediation
Rank

8 458k/707k458k/707k

29 161 54729 161 547

10 100 1,00010 100 1,000
25% closed 50% closed 75% closed

FIGURE 26: INFORMATION LEAK AGE SNAPSHOT

Information Leakage

These are flaws that allow the application to reveal sensitive data about the application, environment, or user, that

could be leveraged by an attacker to hone future attacks against the application. These flaws are usually very low

on the exploitability and severity ratings, but they frequently provide valuable breadcrumbs to attackers scoping

out targets. They can be used to provide system and configuration information about victims so that attackers

can target exploits specific to the victim’s setup. Not to mention, data leaked through these vulnerabilities could

be highly sensitive — directly leading to a high-profile data breach without any further attacks necessary.

Prevalence
Rank

2
Prevalence

64%
of applications

Remediation
Rank

5 187k/253k187k/253k

15 102 34315 102 343

10 100 1,00010 100 1,000
25% closed 50% closed 75% closed

FIGURE 27: CRYPTOGRAPHIC ISSUES SNAPSHOT

Cryptographic Issues

This includes a number of risky cryptographic practices, including using broken crypto algorithms, improperly

validating certificates, storing sensitive information in cleartext, and employing inadequate encryption strength.

The flaw severity of these attacks is exclusively at three; nevertheless, these flaws are very serious. They may not

necessarily lead to remote code execution, but they do very frequently lead to embarrassing and costly data breaches.

B R E A K D O W N :

Top 10 Most Common Vulnerabilities

Volume 9 | State of Software Security | 29

30 | State of Software Security | Volume 9

Prevalence
Rank

3
Prevalence

63%
of applications

Remediation
Rank

10 352k/598k352k/598k

57 307 112357 307 1123

10 100 1,00010 100 1,000
25% closed 50% closed 75% closed

FIGURE 28 : CODE QUALITY SNAPSHOT

Code Quality

These are common issues in code quality that could eventually impact the security of the application.

Some examples include improper resource shutdown or release, leftover debug code, and using the

wrong operator when comparing strings.

Prevalence
Rank

4
Prevalence

60%
of applications

Remediation
Rank

4 983k/1.2m983k/1.2m

10 69 32610 69 326

10 100 1,00010 100 1,000
25% closed 50% closed 75% closed

FIGURE 29 : CRLF INJECTION SNAPSHOT

CRLF Injection

This includes any vulnerability that enables carriage return line feed (CRLF) injection attacks. Included here

are flaws involving improper output neutralization for logs, and improper neutralization of CRLF in HTTP

headers. These flaws are not rated high or critical, but they are generally pretty exploitable. They tend to

lead to HTTP response splitting attacks, which are often then chained into XSS attacks.

B R E A K D O W N : Top 10 Most Common Vulnerabilities

30 | State of Software Security | Volume 9

Volume 9 | State of Software Security | 31

Prevalence
Rank

5
Prevalence

49%
of applications

Remediation
Rank

7 1m/1.6m1m/1.6m

28 135 47528 135 475

10 100 1,00010 100 1,000
25% closed 50% closed 75% closed

FIGURE 30: XSS SNAPSHOT

Cross-Site Scripting (XSS)

These are vulnerabilities that give attackers the capability to inject client-side scripts into the application,

potentially bypassing security controls in the process. While XSS flaws are typically of moderate severity,

these are some of the most exploitable flaws among the categories tracked. Unsurprisingly, they are also

the number one favorite vulnerability type leveraged by attackers on the web today.

Prevalence
Rank

6
Prevalence

48%
of applications

Remediation
Rank

3 266k/336k266k/336k

9 64 2999 64 299

10 100 1,00010 100 1,000
25% closed 50% closed 75% closed

FIGURE 31 : DIRECTORY TRAVERSAL SNAPSHOT

Directory Traversal

These flaws open up the possibility of attacks that give malicious actors the capability to gain unauthorized

access to restricted directories and files. Like XSS attacks, directory traversals may only be moderately

severe, but they are usually very exploitable. They are frequently chained-in attacks. This year, for example,

researchers showed that it was possible to chain together attacks on several directory traversal vulnerabilities,

combined with a few other flaws, in order to completely compromise a popular enterprise CRM system.

B R E A K D O W N : Top 10 Most Common Vulnerabilities

Volume 9 | State of Software Security | 31

32 | State of Software Security | Volume 9

Prevalence
Rank

7
Prevalence

47%
of applications

Remediation
Rank

2 470k/612k470k/612k

17 88 29217 88 292

10 100 1,00010 100 1,000
25% closed 50% closed 75% closed

FIGURE 32 : INSUFFICIENT INPUT VALIDATION SNAPSHOT

Insufficient Input Validation

Tainted input is the root cause of many security headaches. This category includes a number of input

validation flaws that open up the application to malformed input that can cause security issues. This

includes vulnerabilities involving open redirect and unsafe reflection.

Prevalence
Rank

8
Prevalence

43%
of applications

Remediation
Rank

1 95k/116k95k/116k

15 72 30515 72 305

10 100 1,00010 100 1,000
25% closed 50% closed 75% closed

FIGURE 33: CREDENTIALS MANAGEMENT SNAPSHOT

Credentials Management

These are errors in the handling of user credentials that can enable attackers to bypass access controls.

Some of the most common errors include hard-coded passwords and plaintext passwords in configuration

files and elsewhere. These flaws are often scored with a low severity rating that does not indicate the true

seriousness of these flaws. Something like a hard-coded password can easily provide the keys to the kingdom

if an attacker has some knowledge of the system that the victim uses. For example, in commercial software,

attackers may glean that knowledge simply by reading a manual.

32 | State of Software Security | Volume 9

B R E A K D O W N : Top 10 Most Common Vulnerabilities

Volume 9 | State of Software Security | 33

Prevalence
Rank

9
Prevalence

27%
of applications

Remediation
Rank

6 142k/191k142k/191k

23 112 36923 112 369

10 100 1,00010 100 1,000
25% closed 50% closed 75% closed

FIGURE 34: SQL INJECTION SNAPSHOT

SQL Injection

One of the most severe categories of this group, SQLi are any vulnerability that allow the attacker to gain

unauthorized access to a back-end database by using maliciously crafted input. They are almost exclusively

Severity 4 flaws with extremely high exploitability ratings. According to their flaw persistence intervals,

organizations leave one in four of these vulnerabilities open for more than a year after discovery. These are

behind only XSS in terms of flaws most exploited on the web.

Prevalence
Rank

10
Prevalence

20%
of applications

Remediation
Rank

9 64k/94k64k/94k

17 185 81117 185 811

10 100 1,00010 100 1,000
25% closed 50% closed 75% closed

FIGURE 35: ENCAPSULATION SNAPSHOT

Encapsulation

These vulnerabilities involve code that does not sufficiently encapsulate critical data or functionality.

This includes trust boundary violations, protection mechanism failures, and deserialization of untrusted data.

Volume 9 | State of Software Security | 33

B R E A K D O W N : Top 10 Most Common Vulnerabilities

34 | State of Software Security | Volume 9

Snapshots of Five Other Serious Flaw Categories

Prevalence
Rank

12
Prevalence

14%
of applications

12k/16k12k/16k

11 63 23611 63 236

10 100 1,00010 100 1,000
25% closed 50% closed 75% closed

FIGURE 36: COMMAND OR ARGUMENT INJECTION SNAPSHOT

Prevalence
Rank

25
Prevalence

3%
of applications

24k/30k24k/30k

25 86 22525 86 225

10 100 1,00010 100 1,000
25% closed 50% closed 75% closed

FIGURE 37: BUFFER OVERFLOW SNAPSHOT

Prevalence
Rank

27
Prevalence

2%
of applications

941/1.1k941/1.1k

73 14373 143

10 100 1,00010 100 1,000
25% closed 50% closed 75% closed

FIGURE 38 : DANGEROUS FUNCTIONS SNAPSHOT

Prevalence
Rank

14
Prevalence

11%
of applications

32k/40k32k/40k

12 105 34012 105 340

10 100 1,00010 100 1,000
25% closed 50% closed 75% closed

FIGURE 39 : UNTRUSTED INITIALIZATION SNAPSHOT

Prevalence
Rank

20
Prevalence

7%
of applications

4.7k/5.7k4.7k/5.7k

11 79 42511 79 425

10 100 1,00010 100 1,000
25% closed 50% closed 75% closed

FIGURE 40: UNTRUSTED SEARCH PATH SNAPSHOT

As we alluded to in our overview of common flaw categories, the frequency of flaw occurrence

does not give the most complete picture of the overall risk profile of security today. As such,

we would like to highlight a few other serious flaw categories that did not make the top 10 list

— but are worth tracking because of how severe and/or exploitable they truly are.

34 | State of Software Security | Volume 9

Volume 9 | State of Software Security | 35

As the DevOps movement has unfolded, security-minded organizations have recognized that

embedding security design and testing directly into the continuous software delivery cycle of

DevOps is a must for enterprises. This is the genesis of DevSecOps principles, which offer a

balance of speed, flexibility, and risk management for organizations that adopt them. The difficulty

is that, until now, it has been tough to find concrete evidence of DevSecOps’ security benefits.

That’s all changing, because we’ve made some significant breakthroughs with our SOSS 9 analysis.

This is the third year in a row that we’ve documented momentum for DevSecOps practices in the

enterprise, and now with our flaw persistence analysis, we’ve also got hard evidence to show that

DevSecOps has the potential to be a very positive influence on the state of software security.

Our data shows that customers taking advantage of DevSecOps’

continuous software delivery are closing their vulnerabilities more

quickly than the typical organization.

DevOps practices have taken the IT world by storm. Enterprises

increasingly recognize that the speed of software delivery spurred on

by DevOps practices can often be a game changer when it comes to

digital transformation and business competitiveness. One study by CA

Technologies recently showed that the highest performing organizations

in DevOps and Agile processes are seeing a 60% higher rate of revenue

and profit growth, and are 2.4x more likely than their mainstream

counterparts to be growing their business at a rate of more than 20%.

The DevSecOps Effect

36 | State of Software Security | Volume 9

Scan Frequency and Cadence
Over the past three years, we’ve examined scanning

frequency as a bellwether for the prevalence of DevSecOps

adoption in our customer base. Our hypothesis is that the

more frequently organizations are scanning their software, the

more likely it is that they’re engaging in DevSecOps practices.

Incrementalism is the name of the game in DevOps, which focuses heavily on

deploying small, frequent software builds. Doing it this way makes it easier

to deliver gradual improvements to all aspects of the application. When

organizations embrace DevSecOps, they embed security checks into those

ongoing builds, folding in continuous improvement of the application’s security

posture alongside feature improvement.

Keeping this in mind, it’s only natural that a DevSecOps organization will scan

much more frequently than a traditional waterfall development organization.

These organizations tend to top-load huge changes into a lengthy development

cycle, and usually kick security tests to the end of that process as a cursory

checkbox action item.

To keep things in perspective, when we look at scan frequency by application,

we see that it’s still heavily weighted toward just a handful of scans per

application. The median scan rate amongst our entire application portfolio

under test is still just two. Plenty of organizations obviously still stick to what

they’ve always done before.

FIGURE 41 : SCAN RATES

37.1%

14.7%

8.2%
5.6%

4.0%

12.7%

8.1%
5.7% 2.3% 1.7%

0.1%

1 2 3 4 5 6 12 24 52 100 365+

Scans per Year

P
e
rc

e
n

t
o

f
A

p
p

lic
a
ti

o
n

s

Source: Veracode SOSS Volume 9, n=33.3k Static Scans

Volume 9 | State of Software Security | 37

12 scans per year

11 scans per year

10 scans per year

9 scans per year

8 scans per year

7 scans per year

6 scans per year

5 scans per year

4 scans per year

3 scans per year

2 scans per year

0 90 180 270 360

Days Between Scans

S
c
a
n

 D
e
n

si
ty

Source: Veracode SOSS Volume 9

However, we’ll note that there are a significant number

of customers that are scanning their applications six or

more times per year. Nearly one in three applications

are scanned at that rate now. The numbers have

fluctuated up and down slightly since we began

tracking this, but for the most part, this rate of

scanning has been fairly steady.

What this chart doesn’t show is that there are some

outliers in our customer base who have fully bought

into the DevSecOps ethos. In some cases, we have

customers who scan an application as many as 1,045

times per year. These DevSecOps unicorns are so

intense in their rate of scan that they skew the average

scan rate considerably. Whereas the median number

of scans per year is two, the mean is more than seven

scans annually.

In the past, we theorized that the number of scans

completed were distributed fairly evenly throughout

the course of the year. We assumed 12 annual scans

probably indicated monthly scans, six scans indicated

every-other-month tests and four scans indicated

quarterly checks. This year, we decided to question

those assumptions, and we’re glad we did.

Interestingly, what we found is that a higher number of

scans doesn’t necessarily equate to a more frequent,

regular cadence to security testing. Instead, when we

looked at the distribution of scans, we found the most

frequent occurrence of a rescan was just a day after

the previous scan. Second to that was a rescan one

week later. And the third most common pattern was

a rescan three days after the previous scan.

When we looked at scan distribution based on the

number of scans done per year, this consistently

played out such that scans were typically conducted

within only a few days or weeks of one another. As we

got up to nine or more scans per year, we started to

see an increase of rescans at 30-day intervals.

FIGURE 42 : SCAN DISTRIBUTION

38 | State of Software Security | Volume 9

When an application is scanned only two or three times in a year, and those

scans are mostly done successively within a few days of one another, an

obvious pattern emerges there. Clearly, many of these development teams are

undergoing a process of doing their security checks, fixing the problems their

organization’s policies dictate, and then quickly moving on. This is same-old,

same-old behavior.

But as we delve into scan distributions of organizations scanning six or more

times a year, we see more rescans at weekly and monthly intervals, too. This

spread could potentially be indicating sprint-based development practices that

are popular among DevOps teams who frequently adhere to Agile and Scrum

methods. Sprint development typically has teams working on a limited scope of

work that’s time-boxed, typically, into two-week- or month-long sprint cycles.

The data could be indicating trends where DevSecOps

teams are working intensely on a particular application or

app feature for one, two, or three focused sprint cycles,

and wrapping up security scans within that work. In this

case, it would make sense to see a number of scans

popping off within a few days or a week or two of one

another. The question is, are these security-focused sprints

that are done so that a team can essentially ignore security

for the rest of the year? Or are they feature-focused

sprints that have security wrapped up into them? It’s a

difficult question to ask, but one which bears reflection.

We’re still seeing

some same-old,

same-old behavior.

When an application

is scanned only two

or three times in

a year, and those

scans are mostly

done within a few

days of one another,

development teams

are likely only

fixing based on

organization policy

and then quickly

moving on.

38 | State of Software Security | Volume 9

Volume 9 | State of Software Security | 39

1-3 scans per year

13-50

300+ scans per year

4-6

51-299

7-12

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 100 200 300 400
Days From First Discovery

P
e
rc

e
n

ta
g

e
 o

f
F

la
w

s
C

lo
se

d

Source: Veracode SOSS Volume 9

As you can see above, every jump in annual scan rates sees a commensurate step up

in the speed of flaw fixes. Once organizations reach the point of 300 or more scans per

year — the true territory of DevSecOps unicorns — the fix velocity goes into overdrive.

DevSecOps Increases Fix Velocity
Whatever the reason for the cadence of scanning, one thing is certain. Our data shows that

there is a very strong correlation between how many times a year an organization scans and

how quickly they address their vulnerabilities.

As we explained above, our working hypothesis is that a greater frequency of scans per year

indicates a higher likelihood of DevSecOps adherence. Whether they officially call what they

do ‘DevOps,’ ‘Agile,’ or something else entirely, we can show that the teams that are scanning

more often are making incremental improvements every time they test.

This does amazing things for fix velocity.

 F IGURE 43: F IX VELOCITY BASED ON SCAN FREQUENCY

Volume 9 | State of Software Security | 39

40 | State of Software Security | Volume 9

If we look at flaw persistence intervals for those organizations that only scan

a couple of times per year, we can see that it takes far longer than average

to get around to making it to any one of the first three quartiles. When apps

are tested fewer than three times a year, flaws persist more than 3.5x longer

than when organization can bump that up to seven to 12 scans annually.

At that rate of scan, flaw persistence intervals tend to track very closely to

the average. Organizations really start to take a bite out of risk when they

increase frequency beyond that. Each step up in scan rate results in shorter

and shorter flaw persistence intervals. Once organizations are scanning more

than 300 times per year, they’re able to shorten flaw persistence 11.5x across

the intervals compared to applications that are only scanned one to three

times per year.

If we look at a simplified view of the flaw persistence analysis curves, the

delta is imminently clear between those flaws that are rescanned 12 or fewer

times per year and those that are checked on more than 50 times a year.

FIGURE 44: EFFECT OF SCAN FREQUENCY ON FLAW
PERSISTENCE INTERVALS

936k/2.1m

817k/1.3m

861k/1.1m

1.2m/1.3m

487k/506k

7.3k/7.3k

936k/2.1m

817k/1.3m

861k/1.1m

1.2m/1.3m

487k/506k

7.3k/7.3k

71

37

20

11

4

3

322

161

91

55

20

5

1307

483

368

230

149

7

71

37

20

11

4

3

322

161

91

55

20

5

1307

483

368

230

149

7

10 100 1,00010 100 1,000

1-3

4-6

7-12

13-50

51-299

300+

25% closed 50% closed 75% closed

Days From First Discovery
Source: Veracode SOSS Volume 9

If we flip the
discussion
around and
discuss flaw
persistence
intervals, we get
greater visibility
into how the
frequency
of scanning
corresponds
numerically to
flaw persistence.

Volume 9 | State of Software Security | 41

It’s important to note that this data may not necessarily be causational. And we admit that

in some instances, more frequent scanning could just be detecting closures more quickly.

However, the correlation is strong enough to offer security professionals and developers

alike some concrete evidence for why they should be embedding more frequent security

checks into their SDLC.

We believe strongly that the same incremental processes and

automation that DevSecOps teams put in place to make it easier

to scan more frequently also lend themselves to faster remediation.

The data above offers some of the first ever statistical evidence to prove that out.

1-12 scans per year

50+ scans per year

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

0 100 200 300
Days From First Discovery

P
e
rc

e
n

ta
g

e
 o

f
O

p
e
n

 F
la

w
s

Source: Veracode SOSS Volume 9

FIGURE 45: EFFECT OF SCAN FREQUENCY ON FLAW PERSISTENCE ANALYSIS

42 | State of Software Security | Volume 9

1.0%

1.0%

2.5%

2.7%

2.9%

11.5%

34.1%

44.4%

Python

iOS

Android

PHP

C++

JavaScript

.Net

Java

Percent of Applications
Source: Veracode SOSS Volume 9, n=32k

Development Trends and Risk

FIGURE 46: LANGUAGE PREVALENCE

L ANGUAGE AND COMPONEN T USE

Most of the trends described in SOSS Vol. 9 are seen through the lens of

just a few major languages. Applications tested on the Veracode platform

were most heavily weighted toward Java and .NET, with a healthy smattering

of JavaScript. Beyond that, there were a number of other languages

represented, but not in nearly the same numbers. This distribution likely

reflects the development environments of the kinds of enterprises that

Veracode caters to, not necessarily the development world as a whole.

Volume 9 | State of Software Security | 43

FIGURE 47: LANGUAGE FLAW PERSISTENCE ANALYSIS

Avg.

PHP

iOS
C++

.Net

JavaScript

Java

AndroidPython

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

0 100 200 300 400
Days From First Discovery

P
er

ce
nt

ag
e

o
f

O
p

en
 F

la
w

s

Source: Veracode SOSS Volume 9

In examining flaw persistence analysis curves for the various languages represented in our mix, we see that

.NET most closely follows the flaw persistence patterns of the average application. Developers were able

to address flaws the quickest within software written in Javascript, Android, and Python. Meanwhile, they

struggled more with longer open flaw windows in Java, iOS, and PHP.

44 | State of Software Security | Volume 9

SOF T WARE COMPOSI T ION ANALYS IS
For several years now, we’ve drawn attention to the fact that vulnerable

open source software components run rampant within most software.

That trend continues. Last year, about 88% of Java applications had at

least one vulnerability in a component; this year, that figure dipped down

marginally to 87.5%.

12.5%
No Flaws

87.5%
At Least
One Flaw

Java

9.8%
No Flaws

90.2%
At Least
One Flaw

PHP

14.3%
No Flaws

85.7%
At Least
One Flaw

.Net

7.6%
No Flaws

92.4%
At Least
One Flaw

C++

31.5%
No Flaws

68.5%
At Least
One Flaw

JavaScript

FIGURE 48 :

AT LEAST ONE FLAW IN A COMPONENT, BY LANGUAGE

Within typical languages, the majority of component

flaws present themselves within flexible libraries and

frameworks, which developers use in countless ways.

Volume 9 | State of Software Security | 45

9.3%

9.3%

9.3%

10.7%

13.3%

18.7%

24.0%

25.3%

29.3%

32.0%

codeigniter/framework

smarty/smarty

symfony/http-foundation

drupal/core

erusev/parsedown

laravel/framework

appserver-io/http

swiftmailer/swiftmailer

moodle/moodle

phpunit/phpunit

Percent of PHP Applications
Source: Veracode SOSS Volume 9, n=75

30.9%

31.5%

32.7%

33.0%

34.5%

35.2%

35.7%

45.5%

53.4%

56.6%

growl

tunnel-agent

lodash

minimatch

shelljs

hoek

mime

ms

debug

request

Percent of JavaScript Applications
Source: Veracode SOSS Volume 9, n=5,725

FIGURE 50: MOST COMMON JAVASCRIPT COMPONENT FLAWS

The crucial thing to keep

in mind about vulnerable

components is that it’s

not just important to

know when a component

contains a flaw, but

whether that component

is used in such a way

that the flaw is easily

exploitable. Data compiled

from customer use of

our SourceClear solution

shows that at least nine

times out of 10, developers

are not necessarily using

a vulnerable library in a

vulnerable way.

By understanding not

just the status of the

component, but whether

or not a vulnerable

method is being called,

organizations can

pinpoint their component

risk and prioritize fixes

based on the riskiest

uses of components. The

charts above do not take

vulnerable methods into

account, which we believe

bears future exploration in

future reports.

FIGURE 51 : MOST COMMON PHP COMPONENT FLAWS

21.6%

22.2%

24.1%

29.2%

33.0%

33.8%

34.9%

36.9%

41.1%

57.8%

io.netty

ch.qos.logback

org.hibernate

org.bouncycastle

org.codehaus.jackson

org.apache.httpcomponents

org.springframework

commons-io

com.google.guava

com.fasterxml.jackson.core

Percent of Java Applications
Source: Veracode SOSS Volume 9, n=9,929

FIGURE 49: MOST COMMON JAVA COMPONENT FLAWS

46 | State of Software Security | Volume 9

Industry Overview
This year’s industry breakdowns show some interesting new trends, with nearly every industry

making gains on application risk compared to last year’s metric. Some specific verticals like

Healthcare, Government and Education, and Retail made particularly huge strides, with those

industries occupying the top three slots for OWASP pass rates on latest scan.

In looking at OWASP first scan/latest scan pairs, we see that all of the major industries

outperform the overall rates by some margin in both metrics. To understand how that works,

it’s important to note that applications under test in these major industries only made up a

percentage of all applications under test. About 15% of apps on first scan and 16% of apps in

latest scan were done by organizations in other industries. Based on these numbers, those

in the ‘other’ bucket are clearly underperforming compared to established verticals when it

comes to passing the OWASP litmus test.

Breaking out the application risk data by vertical offers security staff

and developers in key industries strong benchmarks for comparing

their AppSec performance to industry peers. The data also offers

indications about which industries are making faster headway in

improving their AppSec practices.

Application Risk by Industry

Volume 9 | State of Software Security | 47

22.5%

27.7%

14.9%

29.0%

22.6%

22.2%

21.5%

25.4%

20.3%

29.0%

22.8%

31.4%

22.5%

29.4%

23.5%

55.3%

First Scan

Latest Scan

All Industries

Technology

Manufacturing

Financials

Infrastructure

Retail

Gov/Edu

Healthcare

Passing Rate of Applications

Source: Veracode SOSS Volume 9

As readers compare improvement between first scan and latest scan pass

results, we offer a caution. Some industries, like Healthcare, Retail, and

Technology, saw an outsized jump in pass rates — but we need to keep in mind

the number of applications tested in each round. There was a drastic drop in the

number of applications retested by these organizations in all three industries.

We have a couple of theories to explain this data. Our leading theory could

be that organizations in these industries designate certain apps as important,

and those are the ones they rescan, repeatedly, until they meet policy. These

are highly regulated industries, so this behavior could indicate they’re still

doing a lot of testing for the auditors. The applications that aren’t getting

retested are the ones deemed less business critical, so they get scanned once

for compliance and then ignored. That last rescan is simply a formality to get

the passing checkmark for auditors, and everything else only tested one time

is left by the wayside. Looking at it with this lens, you see that the first scan/

latest scan improvements for industries like Government and Education, and

Manufacturing are more likely to accurately reflect improvements to their entire

portfolio over the course of the year. In these cases, the number of apps tested

are nearly the same in both the first and latest scan.

In the “Focus

on Fix” section

of this report,

we started the

discussion of what

flaw persistence

intervals look like

broken down by

industry. Even

with the caveat

above about

single scanning,

when we look at

flaw persistence

among all

discovered flaws,

we see that

Healthcare and

Retail are still

reducing their risk

the fastest.

FIGURE 52 : OWASP PASS RATES COMPARISON

48 | State of Software Security | Volume 9

FIGURE 53: INDUSTRY OVERVIEW FLAW PERSISTENCE ANALYSIS

Avg.

Manufacturing

Financials

Infrastructure

Gov/Edu
Technology

Retail
Healthcare

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

0 100 200 300 400
Days From First Discovery

P
er

ce
nt

ag
e

o
f

O
p

en
 F

la
w

s

Source: Veracode SOSS Volume 9

A comparative overview of flaw persistence analysis offers an

at-a-glance view of how long each industry is letting risk linger

relative to other verticals.

48 | State of Software Security | Volume 9

Volume 9 | State of Software Security | 49

11.4%

2.6%

2.8%

1.3%

0.7%

6.6%

62.7%

11.0%

40.2%

62.5%

48.9%

61.0%

0.5%

43.5%

21.0%

4.5%

67.3%

2.3%

48.6%

0.7%

5.8%

7.7%

10.6%

25.7%

17.2%

8.6%

4.8%

10.7%

0.5%

1.7%

0.2%

0.3%

4.8%

59.1%

6.7%

34.8%

50.5%

58.8%

41.7%

37.9%

17.3%

1.9%

64.5%

1.4%

50.4%

0.2%

4.8%

6.1%

8.7%

24.0%

14.5%

5.4%

2.2%

9.4%

1.9%

2.9%

3.9%

4.2%

6.1%

59.4%

14.2%

39.8%

50.3%

44.5%

62.1%

2.9%

47.2%

15.0%

10.4%

63.8%

2.9%

45.8%

4.2%

12.6%

5.0%

7.1%

31.9%

19.3%

16.8%

9.7%

6.5%

5.2%

2.5%

0.7%

0.2%

8.2%

63.1%

5.7%

38.2%

59.1%

32.7%

47.9%

32.9%

12.5%

2.7%

60.8%

2.0%

45.4%

0.2%

4.0%

3.0%

4.7%

13.7%

20.9%

8.2%

5.2%

11.7%

4.7%

3.4%

3.9%

3.4%

6.2%

61.6%

12.3%

36.9%

55.6%

44.0%

59.3%

1.8%

49.6%

17.9%

9.1%

61.7%

2.7%

38.7%

3.6%

8.0%

6.2%

9.1%

24.0%

17.8%

8.2%

6.5%

9.8%

2.8%

2.7%

1.4%

1.2%

9.2%

65.0%

13.2%

43.4%

59.1%

47.2%

64.3%

0.5%

51.0%

18.9%

4.9%

66.1%

2.6%

46.3%

1.1%

8.0%

6.2%

9.9%

31.5%

22.2%

12.9%

6.3%

16.5%

4.1%

4.8%

9.1%

8.9%

10.3%

64.2%

19.4%

50.1%

56.6%

48.5%

70.1%

6.4%

55.5%

20.5%

14.5%

67.8%

2.7%

44.1%

8.9%

16.4%

11.7%

8.4%

31.9%

24.1%

15.5%

11.3%

12.3%

3.3%

3.5%

3.5%

3.0%

7.9%

63.1%

13.7%

43.0%

59.5%

48.6%

63.7%

2.1%

48.0%

19.9%

7.7%

66.9%

2.5%

46.6%

3.1%

9.0%

8.1%

9.5%

27.5%

19.4%

10.9%

6.9%

Overall
Financials

Gov/Edu
Healthcare

Infrastructure

Manufacturing

Retail
Tech

Untrusted Search Path
Untrusted Initialization

Time and State
SQL Injection

Session Fixation
Race Conditions

Potential Backdoor
Numeric Errors

Insufficient Input Validation
Insecure Dependencies

Information Leakage
Error Handling
Encapsulation

Directory Traversal
Dangerous Functions
Cryptographic Issues

Cross-Site Scripting (XSS)
CRLF Injection

Credentials Management
Command or Argument Injection

Code Quality
Code Injection

Buffer Overflow
Buffer Management Errors

Authorization Issues
Authentication Issues

API Abuse

Source: Veracode SOSS Volume 9

Industry Snapshots

FIGURE 54: INDUSTRY TOP VULNERABILITY CATEGORIES OVERVIEW

Finally, the prevalence of the types of vulnerabilities plaguing organizations tend

to vary slightly industry-by-industry — but they generally track with overall stats.

This matrix compares the incidence of different vulnerability categories by industry.

Volume 9 | State of Software Security | 49

50 | State of Software Security | Volume 9

25.4%

27.7%All Industries

Financials

Percent of Applications Passing OWASP
Source: Veracode SOSS Volume 9, n=25,790

Financials

All Industries

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

0 100 200 300 400
Days From First Discovery

P
e
rc

e
n

ta
g

e
 o

f
O

p
e
n

 F
la

w
s

Source: Veracode SOSS Volume 9

FIGURE 56: F INANCIALS TOP VULNERABILITY CATEGORIES

21.5%
16.3%

23.1%
44.6%

34.0%
25.7%

35.6%
27.3%

39.8%
26.5%

41.5%
31.0%

50.9%
33.6%

51.1%
35.4%

62.8%
58.4%

70.7%
70.0%

Financials
All Industries

SQL Injection

Server Configuration

Credentials Management

Directory Traversal

Insu�cient Input Validation

Cross-Site Scripting (XSS)

CRLF Injection

Code Quality

Cryptographic Issues

Information Leakage

Percent of Applications with Finding in Category
Source: Veracode SOSS Volume 9

Financials
Undeniably, the

largest population of

applications under test

come from the Financial

vertical. While financial

organizations tend to

have the reputation

of having some of the

most mature overall

cybersecurity practices,

our data shows they

struggle like the rest of

organizations to stay

on top of application

security.

The industry ranked

second to last in the

major verticals for latest

scan OWASP pass rate,

and based on the flaw

persistence analysis

chart, it is leaving flaws

to linger longer than

other industries.

FIGURE 57: F INANCIALS INDIVIDUAL VERTICAL FLAW
PERSISTENCE ANALYSIS

FIGURE 55: F INANCIALS LATEST SCAN OWASP PASS RATE
COMPARED TO OVERALL

2017

5
2018

6
LATEST SCAN PASS RANK

Industry Snapshots

Source of all charts:
Veracode SOSS Volume 9

50 | State of Software Security | Volume 9

Volume 9 | State of Software Security | 51

Gov/Edu

All Industries

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

0 100 200 300 400
Days From First Discovery

P
e
rc

e
n

ta
g

e
 o

f
O

p
e
n

 F
la

w
s

Source: Veracode SOSS Volume 9

6.7%
27.3%

6.8%
25.7%

8.5%
33.6%

8.6%
26.5%

9.9%
35.4%

17.1%
31.0%

28.3%
17.3%

47.0%
58.4%

77.3%
44.6%

83.6%
70.0%

Gov/Edu
All Industries

Directory Traversal

Credentials Management

CRLF Injection

Insu�cient Input Validation

Code Quality

Cross-Site Scripting (XSS)

Deployment Configuration

Cryptographic Issues

Server Configuration

Information Leakage

Percent of Applications with Finding in Category
Source: Veracode SOSS Volume 9

FIGURE 59: GOVERNMENT AND EDUCATION TOP
VULNERABILITY CATEGORIES

Government
and Education
This year’s data holds a

lot of good news from

the Government and

Education sector, which

performed significantly

better than in volume

8 of this report. Last

year, the industry was

dead last in latest scan

OWASP pass rank. This

year, it came in second

only to Healthcare. Its

OWASP pass rate is about

20 percentage points

higher this year, and the

remarkable thing about

this is that organizations in

Government scan just as

many apps in latest scan

as they do in first scan.

In examining flaw

persistence, the analysis

curve shows that while

these organizations are

slower than usual out

of the gate, they pick

up speed with resolving

vulnerabilities as they dig

into the second half of

remaining flaws.

FIGURE 60: GOVERNMENT AND EDUCATION INDIVIDUAL
VERTICAL FLAW PERSISTENCE ANALYSIS

FIGURE 58 : GOVERNMENT AND EDUCATION LATEST SCAN
OWASP PASS RATE COMPARED TO OVERALL

Industry Snapshots

29.4%

27.7%All Industries

Gov/Edu

Percent of Applications Passing OWASP
Source: Veracode SOSS Volume 9, n=25,790

Source of all charts:
Veracode SOSS Volume 9

2017

7
2018

5
LATEST SCAN PASS RANK

Volume 9 | State of Software Security | 51

52 | State of Software Security | Volume 9

55.3%

27.7%All Industries

Healthcare

Percent of Applications Passing OWASP
Source: Veracode SOSS Volume 9, n=25,790

FIGURE 62 : HEALTHCARE TOP VULNERABILITY CATEGORIES

10.1%
27.3%

10.2%
26.5%

10.6%
33.6%

12.0%
35.4%

12.6%
25.7%

16.3%
31.0%

24.5%
17.3%

47.4%
58.4%

66.9%
70.0%

77.8%
44.6%

Healthcare
All Industries

Directory Traversal

Insu�cient Input Validation

CRLF Injection

Code Quality

Credentials Management

Cross-Site Scripting (XSS)

Deployment Configuration

Cryptographic Issues

Information Leakage

Server Configuration

Percent of Applications with Finding in Category
Source: Veracode SOSS Volume 9

Healthcare
The highly regulated

healthcare industry got

high marks in many of

this year’s SOSS metrics.

Organizations in this

sector had the highest

latest scan OWASP pass

rates of all verticals,

though we will reiterate

that the population

of apps scanned was

significantly lower than

for first scan results. This

indicates that healthcare

organizations could be

leaving some risk on

the table with many

applications scanned

only a single time and

subsequently ignored.

Nevertheless, flaw

persistence analysis

shows that when

looking at all found

vulnerabilities, this

industry is statistically

closing the window on

app risk more quickly

than any other sector.
FIGURE 63: HEALTHCARE INDIVIDUAL VERTICAL FLAW
PERSISTENCE ANALYSIS

Healthcare
All Industries

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

0 100 200 300 400
Days From First Discovery

P
e
rc

e
n

ta
g

e
 o

f
O

p
e
n

 F
la

w
s

Source: Veracode SOSS Volume 9

FIGURE 61 : HEALTHCARE LATEST SCAN OWASP PASS RATE
COMPARED TO OVERALL

Source of all charts:
Veracode SOSS Volume 9

2017

2
2018

1
LATEST SCAN PASS RANK

52 | State of Software Security | Volume 9

Industry Snapshots

Volume 9 | State of Software Security | 53

29.0%

27.7%All Industries

Infrastructure

Percent of Applications Passing OWASP
Source: Veracode SOSS Volume 9, n=25,790

17.6%
15.4%

22.9%
11.2%

31.2%
27.3%

33.3%
31.0%

37.0%
25.7%

43.6%
26.5%

52.2%
58.4%

55.0%
33.6%

58.7%
35.4%

65.8%
70.0%

Infrastructure
All Industries

Encapsulation

Time and State

Directory Traversal

Cross-Site Scripting (XSS)

Credentials Management

Insu�cient Input Validation

Cryptographic Issues

CRLF Injection

Code Quality

Information Leakage

Percent of Applications with Finding in Category
Source: Veracode SOSS Volume 9

FIGURE 65: INFRASTRUCTURE TOP VULNERABILITY
CATEGORIES

Infrastructure
Infrastructure

organizations test

the fewest number of

applications compared to

any other tracked vertical,

despite the growing risk to

their applications.

Infrastructure organizations

ranked toward the bottom

of the list when it comes to

latest scan OWASP pass

rates. The good news is

that they still saw a bump

in this metric, gaining about

6 percentage points over

similar 2017 pass rates.

In examining flaw

persistence, infrastructure

jumped on the first half

of their flaws very quickly

relative to the average. But

organizations in this sector

struggled to take care of

the last 50% in a timely

manner. This likely indicates

the unique challenges

of the vertical, which is

chock full of sensitive

applications with low

tolerance for downtime

and stringent change

management practices

that may delay the

deployment of code fixes.

FIGURE 66: INFRASTRUCTURE INDIVIDUAL VERTICAL FLAW
PERSISTENCE ANALYSIS

Infrastructure

All Industries

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

0 100 200 300 400
Days From First Discovery

P
e
rc

e
n

ta
g

e
 o

f
O

p
e
n

 F
la

w
s

Source: Veracode SOSS Volume 9

FIGURE 64: INFRASTRUCTURE LATEST SCAN OWASP PASS
RATE COMPARED TO OVERALL

Source of all charts:
Veracode SOSS Volume 9

2017

3
2018

5
LATEST SCAN PASS RANK

Volume 9 | State of Software Security | 53

Industry Snapshots

54 | State of Software Security | Volume 9

22.2%

27.7%All Industries

Manufacturing

Percent of Applications Passing OWASP
Source: Veracode SOSS Volume 9, n=25,790

16.4%
17.3%

17.3%
25.7%

17.5%
26.5%

21.9%
27.3%

23.1%
31.0%

25.4%
33.6%

27.1%
35.4%

51.9%
44.6%

53.6%
58.4%

61.8%
70.0%

Manufacturing
All Industries

Deployment Configuration

Credentials Management

Insu
cient Input Validation

Directory Traversal

Cross-Site Scripting (XSS)

CRLF Injection

Code Quality

Server Configuration

Cryptographic Issues

Information Leakage

Percent of Applications with Finding in Category

Source: Veracode SOSS Volume 9

Manufacturing
The manufacturing

industry tumbled the

farthest in the rankings for

latest scan OWASP pass

rates, dropping from first to

last industrywide. But when

we examined the actual

percentages year-by-year

we found that the sector

had nearly the identical

proportion of applications

passing OWASP standards

on latest scan this year

compared to last year.

This indicates that even

though manufacturing

didn’t lose ground on

OWASP adherence, it isn’t

improving the way other

industries did in the last

year. When we look at flaw

persistence, manufacturing

clearly has a lot of work

to do. It consistently left

application risks to linger

longer than any other

industry.

One notable piece of data

for this industry: it was the

only one with lower latest

scan OWASP pass rates

than first scan. This could

be an indication of more

new applications under test

for this industry this year.

FIGURE 69: MANUFACTURING INDIVIDUAL VERTICAL FLAW
PERSISTENCE ANALYSIS

Manufacturing

All Industries

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

0 100 200 300 400
Days From First Discovery

P
e
rc

e
n

ta
g

e
 o

f
O

p
e
n

 F
la

w
s

Source: Veracode SOSS Volume 9

FIGURE 67: MANUFACTURING LATEST SCAN OWASP PASS
RATE COMPARED TO OVERALL

Source of all charts:
Veracode SOSS Volume 9

FIGURE 68 : MANUFACTURING TOP VULNERABILITY
CATEGORIES

2017

1
2018

7
LATEST SCAN PASS RANK

54 | State of Software Security | Volume 9

Industry Snapshots

Volume 9 | State of Software Security | 55

31.4%

27.7%All Industries

Retail

Percent of Applications Passing OWASP
Source: Veracode SOSS Volume 9, n=25,790

22.0%
17.3%

24.9%
25.7%

25.4%
26.5%

28.5%
27.3%

30.3%
31.0%

32.1%
33.6%

35.2%
35.4%

42.1%
44.6%

57.6%
58.4%

70.8%
70.0%

Retail
All Industries

Deployment Configuration

Credentials Management

Insu
cient Input Validation

Directory Traversal

Cross-Site Scripting (XSS)

CRLF Injection

Code Quality

Server Configuration

Cryptographic Issues

Information Leakage

Percent of Applications with Finding in Category

Source: Veracode SOSS Volume 9

FIGURE 71 : RETAIL TOP VULNERABILITY CATEGORIES

Retail
Retail offered another

bright spot in this mix

of industries. Its latest

scan OWASP pass rates

improved decently by

about 12 percentage

points in the last year, and

it edged from fourth to

third place in this regard.

It is also notable how

much less time this

vertical leaves its flaws

open compared to

almost all other sectors.

The flaw persistence

analysis curve for the

Retail category shows

that it’s only second to

Healthcare in its speed

of shutting down flaws.

FIGURE 72 : RETAIL INDIVIDUAL VERTICAL FLAW
PERSISTENCE ANALYSIS

Retail
All Industries

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

0 100 200 300 400
Days From First Discovery

P
e
rc

e
n

ta
g

e
 o

f
O

p
e
n

 F
la

w
s

Source: Veracode SOSS Volume 9

FIGURE 70: RETAIL LATEST SCAN OWASP PASS RATE
COMPARED TO OVERALL

Source of all charts:
Veracode SOSS Volume 9

2017

4
2018

3
LATEST SCAN PASS RANK

Volume 9 | State of Software Security | 55

Industry Snapshots

56 | State of Software Security | Volume 9

Technology

All Industries

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

0 100 200 300 400
Days From First Discovery

P
e
rc

e
n

ta
g

e
 o

f
O

p
e
n

 F
la

w
s

Source: Veracode SOSS Volume 9

29.0%

27.7%All Industries

Technology

Percent of Applications Passing OWASP
Source: Veracode SOSS Volume 9, n=25,790

20.8%
16.3%

27.9%
26.5%

32.9%
25.7%

33.8%
31.0%

35.1%
27.3%

35.2%
33.6%

40.0%
35.4%

43.0%
44.6%

62.7%
58.4%

72.1%
70.0%

Technology
All Industries

SQL Injection

Insu�cient Input Validation

Credentials Management

Cross-Site Scripting (XSS)

Directory Traversal

CRLF Injection

Code Quality

Server Configuration

Cryptographic Issues

Information Leakage

Percent of Applications with Finding in Category
Source: Veracode SOSS Volume 9

Technology
Technology is the

second-most prolific

industry in terms of

the volume of apps

tested. Only financial

organizations test more

applications on the

Veracode platform. As a

group, tech companies

occupy middle-of-the-

pack status for most

performance indicators.

It came in fourth for

latest scan OWASP

pass rates, and its pass

rate this year was a

healthy 11 percentage

points higher than last

year’s results. For flaw

persistence, technology

firms have a curve that

sits right between other

comparable industry

curves. In examining the

flaw persistence analysis

curve for tech firms

compared to the overall

curve, we can see that

the industry leaves flaws

present for less time than

the typical firm.

FIGURE 75: TECHNOLOGY INDIVIDUAL VERTICAL FLAW
PERSISTENCE ANALYSIS

FIGURE 73: TECHNOLOGY LATEST SCAN OWASP PASS RATE
COMPARED TO OVERALL

Source of all charts:
Veracode SOSS Volume 9

FIGURE 74: TECHNOLOGY TOP VULNERABILITY CATEGORIES

2017

6
2018

4
LATEST SCAN PASS RANK

56 | State of Software Security | Volume 9

Industry Snapshots

Here are the key lessons we believe that
security professionals, developers, and

business executives should take from the data.

Fix Velocity Matters
The speed at which organizations fix flaws

they discover in their code directly mirrors the

level of risk incurred by applications. The faster

organizations close vulnerabilities, the less risk

software poses over time.

Consider All Dimensions of Risk
The sheer volume of open flaws within

enterprise applications is too staggering

to tackle at once. Which means that

organizations need to find effective ways to

prioritize which flaws they fix first. While many

organizations are doing a good job prioritizing

by flaw severity, data this year shows that

they’re not effectively considering other risk

factors such as the criticality of the application

or exploitability of flaws.

DevSecOps Works
SOSS Vol. 9 offers some of the most dramatic

and concrete evidence to date on the positive

effect DevSecOps practices have on the

state of software security. The data showed

consistently that the more an organization

scans per year, the faster security fixes are

made. The frequent, incremental changes

brought forth by DevSecOps makes it

possible for these teams to fix flaws lightning

fast compared to the traditional dev team.

Components Still Thwart Enterprises
Enterprises still struggle with the occurrence

of vulnerable open source components

within their software. As organizations tackle

bug-ridden components, they should consider

not just the open flaws within libraries and

frameworks, but also how those components

are being used. Some component flaws may

have mitigating factors if they’re not being

used in such a way that the flaw is exposed

to exploit.

85.4% Did not pass

78.5%

68.2%

28.5%

13.3%

14.6%

21.5%

31.8%

71.5%

86.7% Passed

All Flaws

OWASP Top 10

Sans Top 25

High Severity

Very High
Severity

Percent of Applications
Source: Veracode SOSS Volume 9, n=456.4k scans

FIGURE 76: OVERALL PASS RATE

Volume 9 | State of Software Security | 57

There’s Still a
Lot of Work to Do
The following is the overall

pass rate of all scans

compiled for SOSS Vol. 9.

Clearly the industry still

has a lot of work to do. The

time to get started is now!

 KEY TAKEAWAYS
As with so many of the Veracode SOSS reports of the past, SOSS Vol. 9 is full of good and bad

news about enterprise progress on advancing application security. The data offers many signs of

encouragement that organizations are incrementally moving the needle on application security. At the

same time, these positive indicators are balanced by other evidence showing there’s still plenty of work

to be done to shore up application risk.

58 | State of Software Security | Volume 9

Veracode methodology for data analysis uses statistics from a 12-month sample window.

The data represents more than 700,000 application assessments submitted for analysis

during the 12-month period from April 1, 2017 through March 31, 2018, except for the time-

to-close flaws data. The data represents large and small companies, commercial software

suppliers, open source projects, and software outsourcers. In most analyses, an application

was counted only once, even if it was submitted multiple times as vulnerabilities were

remediated and new versions uploaded.

The report contains findings about applications that were subjected to static analysis, dynamic

analysis, software composition analysis, and/or manual penetration testing through Veracode’s

cloud-based platform. The report considers data that was provided by Veracode’s customers

(application portfolio information such as assurance level, industry, application origin) and

information that was calculated or derived in the course of Veracode’s analysis (application

size, application compiler and platform, types of vulnerabilities, and Veracode Level —

predefined security policies which are based on the NIST definitions of assurance levels).

A Note on Mass Closures
While preparing the data for our analysis, and exploring the flaw persistence visualizations

(many of which made it into the report), we noticed several large single-day “drops” in the

charts. While it’s not strange for a scan to discover that dozens or even hundreds of findings

have been fixed (50% of scans closed three or less findings, 75% closed less than 8), we did

find it strange to see some applications closing thousands of findings in a single scan. Upon

further exploration, we found many of these to be invalid: developers would scan entire

filesystems, invalid branches or previous branches, and when they would rescan on the valid

code, every finding not found again would be marked as “fixed.” These mistakes had a large

effect: the top one-tenth of one-percent of the scans (0.1%) accounted for almost a quarter of

all the closed findings. These “mass closure” events had a significant effect on exploring flaw

persistence and the fix velocity, and were ultimately excluded from the persistence analysis.

About the dataset

Methodology
APPENDIX

Volume 9 | State of Software Security | 59

Industry Verticals
This report condenses information about applications coming from 38 different industry

classifications into seven industry verticals, plus a bucket for “other.” The component

industry classifications come from Data.com via Salesforce.com, but Veracode has created

the industry verticals below to simplify the analysis. This year’s State of Software Security

report adds a new industry vertical grouping for infrastructure, based on increased sample

size in these industries (previously included in “other”), and due to increased attention to

security in the component industries. In this year’s report, education organizations were

added to the government industry vertical. A mapping of the component industries to

industry verticals is provided below.

Industry Vertical Component industries as Defined in Data.com

Financial services Banking, Finance, Insurance

Government Government, Education

Healthcare Healthcare, Pharmaceuticals

Infrastructure Energy, Transportation, Utilities

Manufacturing Manufacturing, Aerospace

Other

Biotechnology, Entertainment, Not for Profit, Apparel,
Communications, Engineering, Media, Media & Entertainment,
Food & Beverage, Machinery, Construction, Chemicals, Shipping,
Business Services, Automotive & Transport, Beverages, Recreation,
Real Estate, Membership Organizations, Environmental, Consumer
Services, Not Specified, Other

Retail Retail, Hospitality

Technology Technology, Telecommunications, Electronics, Software,
Security Products and Services, Consulting, Computer Hardware

60 | State of Software Security | Volume 9

18k/25k

36k/79k

1.5m/2.2m

2.6m/3.7m

6.4k/16k

44k/76k

146k/208k

18k/25k

36k/79k

1.5m/2.2m

2.6m/3.7m

6.4k/16k

44k/76k

146k/208k

7

83

24

21

93

22

11

90

526

133

113

388

103

99

417

1576

431

494

1268

335

413

7

83

24

21

93

22

11

90

526

133

113

388

103

99

417

1576

431

494

1268

335

413

10 100 1,00010 100 1,000

Contractor

Open Source

Internally Developed

Not Specified

Outsourced Team

Purchased Application

3rd party library

25% closed 50% closed 75% closed

Days From First Discovery
Source: Veracode SOSS Volume 9

10.7%

10.8%

10.9%

10.9%

12.4%

13.9%

22.1%

n=570

n=93

n=175

n=138

n=5,421

n=251

n=27,828

Purchased Application

Open Source

Contractor

3rd party library

Internally Developed

Outsourced Team

Not Specified

Percent of Applications
Source: Veracode SOSS Volume 9

Data by App Purpose
Veracode collects optional metadata about the application purpose of software scanned by the platform —

this data is provided voluntarily by customers. Since the data set was not as complete as most of our other

information, we did not feel comfortable sharing findings in the main report but we still believe it is worth

sharing. When customers did specify app purpose we found a fairly even distribution between different types

of applications — including internally developed apps, those developed by an outsourced team or contractors,

open source applications and commercial, off-the-shelf applications purchased by the testing organization.

FIGURE 77: OVERALL PASSING BY PURPOSE

FIGURE 78 : FLAW PERSISTENCE BY APP PURPOSE

In examining the

data, we found that

there were some

large differences

in flaw persistence

intervals between

the different kinds

of applications.

For example, third-

party libraries were

some of the fastest

selections of code to

be fixed, while overall

open source software

was among the

slowest. Meantime,

internally developed

applications tracked

almost dead-on

with average flaw

persistence intervals.

STATE OF
SOFTWARE
SECURITY
VOLUME 9

ABOUT VERACODE
Veracode is a leader in helping organizations secure the software that powers their world. Veracode’s SaaS platform and integrated solutions help
security teams and software developers find and fix security-related defects at all points in the software development lifecycle, before they can
be exploited by hackers. Our complete set of offerings helps customers reduce the risk of data breaches, increase the speed of secure software
delivery, meet compliance requirements, and cost effectively secure their software assets — whether that’s software they make, buy, or sell.

Veracode serves more than 1,400 customers across a wide range of industries, including nearly one-third of the Fortune 100,
three of the top four U.S. commercial banks, and more than 20 of Forbes’ 100 Most Valuable Brands. Learn more at www.veracode.com,
on the Veracode blog, on Twitter and in the Veracode Community.

Copyright © 2018 Veracode, Inc. All rights reserved. All other brand names, product names, or trademarks belong to their respective holders.

Contact Us Veracode can help
secure your applications

https://www.veracode.com/
https://www.veracode.com/blog
https://www.twitter.com/Veracode
https://community.veracode.com/s/
https://info.veracode.com/web-contact-us.html?utm_source=soss&utm_medium=collateral
https://info.veracode.com/web-contact-us.html?utm_source=soss&utm_medium=collateral

