
Communicating Application
Security Success to Your

Executive Leadership

SPECIAL REPORT

Content Contributed by the Veracode
Customer Advisory Board Working Group

2C O M M U N I C AT I N G A P P L I C AT I O N S E C U R I T Y S U C C E S S TO YO U R E X E C U T I V E L E A D E R S H I P

Introduction 3

How Do I Prove That I Need an AppSec Program? 5

Why do we need AppSec?

Are AppSec programs effective?

How Do I Prove That Developers Are Participating
in My AppSec Program? 7

Are developers adopting AppSec?

Is security testing integrated into developer processes?

Are developers fixing what they find?

How Do I Prove That My AppSec Program
Is Making Us More Secure? 9

Is early testing reducing later findings?

Are we fixing more security flaws than we find?

Are we fixing security flaws quickly?

Are our apps passing security policy?

Are we spending less pen testing dollars?

Is our AppSec program as effective as our peers’?

How Do I Frame the Story of Our AppSec Success? 15

Conclusion 17

3

2

1

Contents

3C O M M U N I C AT I N G A P P L I C AT I O N S E C U R I T Y S U C C E S S TO YO U R E X E C U T I V E L E A D E R S H I P

Software development, and software security, have changed dramatically in recent
years. As the move to the cloud and the shift to DevOps brought architecture changes
including serverless functions and microservices, software security has had to adapt.
Static analysis (SAST), dynamic analysis (DAST), and software composition analysis (SCA)
solutions continue to mature and include checks for new vulnerability types, while new
testing types like interactive analysis (IAST) have emerged. Penetration testing remains
a reliable, but extremely expensive, technique. But software vulnerabilities remain, and
attackers have also matured and improved their capabilities to target the new landscape.
In fact, Veracode’s most recent State of Software Security report found that 76 percent
of applications have at least one security flaw on initial scan. And headlines continue
to feature high-profile data breaches.

Even in the face of all this change and continued threat, CISOs and application security
program owners across all industries are faced with budget constraints and scrutiny.

These constraints often raise the following questions:

Answering these questions is no small feat, in part because of the ways that application
security differs from other security solutions. You don’t install an AppSec tool and count the
breaches getting deflected; you change the way you develop software by building security
in from the start. This is a significant pivot from traditional, reactive ways of thinking about
security. Consequently, even after security professionals make the case and secure funding
for an AppSec investment, explaining what application security success looks like and
proving the effectiveness of their program is not easy.

1
How do we
determine and
justify the required
resources for
an application
security program?

2
How do we ensure,
and prove, that
development
teams are adopting
software security
practices?

3
Is our application
security operating
effectively?
And how do
we prove that?

INTRODUCTION

This paper, the result of a collaboration between Veracode
staff and the Veracode Customer Advisory Board, was created
to help security professionals prove the effectiveness of their
application security programs.

Veracode’s Customer
Advisory Board (CAB) is made
up of application security
professionals in several
industries, managing teams
of various sizes at differing
stages on their AppSec
journeys. But despite these
differences, when the Board
meets to share best practices
and lessons learned, one
common theme always
emerges — change.

https://www.veracode.com/state-of-software-security-report

4C O M M U N I C AT I N G A P P L I C AT I O N S E C U R I T Y S U C C E S S TO YO U R E X E C U T I V E L E A D E R S H I P

“You can’t manage what you
can’t measure. PETER DRUCKER

Figure 1
AppSec Metrics
to Communicate
Success

METRICS TO INFORM METRICS TO
PROVE SUCCESSHow to determine if the

application security program
is operating efficiently.

• Early testing vs. findings
• Early testing vs. pen test results
• Open to close ratio
• Mean time to resolve
• Policy compliance
• Benchmarking against peers

3

METRICS TO INFORM METRICS TO
PROVE ADOPTION

• Number of apps scanned
• Use of integrations fix rate

How to determine and prove that
development teams are adopting
software security practices.

2

METRICS TO INFORM METRICS TO ESTABLISH
THE NEED FOR APPSEC

• Evidence that AppSec needed
• Evidence that AppSec reduces risk

How to determine and justify
the required resources for an
application security program.

1

The members of the Veracode Customer Advisory Board all experienced this challenge in
some way. To help each other and their wider set of AppSec peers, a subset of CAB members
formed a working group to discuss and ultimately answer the above questions. This paper is
the result of the working group’s efforts. Produced to capture the group’s collective answers,
the paper will contribute to a set of industry best practices that help organizations mature
their AppSec programs, measure their success, and ultimately lower their risk.

The paper defines a set of metrics that CISOs and application security program managers
can use to establish, drive adoption, and operationalize an application security program
(see Figure 1). These data points can help inform decisions at different stages of
program maturity.

It can also answer the basic question often asked by the Executive Team and the Board:
is the application security program effective or not?

5C O M M U N I C AT I N G A P P L I C AT I O N S E C U R I T Y S U C C E S S TO YO U R E X E C U T I V E L E A D E R S H I P

Why do we need AppSec?
The evidence supporting the need for application security is substantial and growing.
As cited above, Veracode’s most recent State of Software Security (SOSS) report found
that 76 percent of applications contain a security flaw on initial scan. And the latest
State of Software Security: Open Source Edition found that more than 70 percent of
apps contain a security flaw in an open source library on initial scan.

These numbers take on new significance in light of the recent acceleration
of digital transformation.

34% $3.86
In fact, cyberattacks are up
34 percent since the start
of the pandemic.

And the Ponemon Institute’s 2020 Cost of a
Data Breach report found that the average
total cost of a data breach is $3.86 million.

million

How Do I Prove That
I Need an AppSec
Program?
AppSec managers need a justifiable AppSec approach and dataset
that set parameters around the program, give a starting point, and
set up how the program will grow over time. That approach starts
with providing evidence that an application security program is
necessary and that it will reduce risk.

1

https://www.veracode.com/state-of-software-security-report
https://info.veracode.com/report-state-of-software-security-open-source-edition.html
https://www.scmagazine.com/home/security-news/covid-19-accounts-for-most-2020-cyberattacks/
https://www.ibm.com/security/data-breach

6C O M M U N I C AT I N G A P P L I C AT I O N S E C U R I T Y S U C C E S S TO YO U R E X E C U T I V E L E A D E R S H I P

Are AppSec programs effective?
Veracode’s State of Software Security report also contains some good news — it reveals data
on subsets of organizations that are following certain best practices and are dramatically
lowering their risk. For example, the 10th volume of the report found that those scanning
their apps for security more frequently had significantly less security debt than those
scanning the least (see Figure 2).

In addition, the 11th volume of Veracode’s SOSS report found that those scanning
more often fix security flaws faster (see Figure 3).

Fixed

Open

13‒50 Annual Scans 51‒299 Annual Scans 300+ Annual Scans

1‒3 Annual Scans 4‒6 Annual Scans 7‒12 Annual Scans

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

400

300

200

100

0

400

300

200

100

0

APPLICATION AGE (MONTHS)

AV
ER

AG
E

FI
N

D
IN

G
S

PE
R

 A
PP

Source: Veracode SOSS Volume 10

62 days

77 days

124 days

217 days

260+ Scans
daily+ average

53–260 Scans
weekly-daily

average

13–52 Scans
monthly-weekly

average

1–12 Scans

Charts like Figures 2 and 3 are a good way to illustrate
what your program should be aiming for and why.

Figure 3
Time to remediate
50% of flaws based
on scan frequency

Figure 2
Comparison of fix
capacity and security
debt by scan frequency

https://www.veracode.com/state-of-software-security-report
https://www.veracode.com/state-of-software-security-report

7C O M M U N I C AT I N G A P P L I C AT I O N S E C U R I T Y S U C C E S S TO YO U R E X E C U T I V E L E A D E R S H I P

Are developers adopting AppSec?
Figure 4 helps illustrate the adoption of an AppSec program, answering the question,
“Are development teams scanning the applications they produce?” This is especially helpful
in a program’s early stages as development teams change their practices to incorporate
security testing. Notice the addition of the target as well. Including the goal or target is
key to putting your metrics in context when communicating with executives.

Applications
Scanned

0% 25% 50% 75% 100%

TARGET = 60%
Figure 4
Measure the percentage
of apps scanned

Is security testing integrated into
developer processes?
It is important for executives to be aware that AppSec success relies on developer
participation. And developer participation relies on ease of use and training. In turn,
the most effective AppSec programs are invisible to developers — they simply integrate
seamlessly into their processes and tools (see “Communicating the Story” below for
more on how to advise executives of this concept), and they include developer training
on secure coding. A recent ESG report found that one of the biggest challenges to
application security is the lack of formal developer training.

How Do I Prove
That Developers Are
Participating in My
AppSec Program?
AppSec success hinges on development buy-in and engagement.
Therefore, proving that your AppSec program is effective requires
evidence of developer adoption. Metrics, like the following, prove
that development teams are adopting software security practices.

2

https://info.veracode.com/survey-report-esg-modern-application-development-security.html

8C O M M U N I C AT I N G A P P L I C AT I O N S E C U R I T Y S U C C E S S TO YO U R E X E C U T I V E L E A D E R S H I P

API
Usage

0% 25% 50% 75% 100%

TARGET = 75%

Fix
Rate

0% 25% 50% 75% 100%

TARGET = 25%

An important metric to highlight application security success is the rate at which
development teams are taking advantage of APIs to integrate security into their processes
(Figure 5). For example, are developers using one of Veracode’s APIs or integrations that
enable them to scan for security through their IDE or build server, or that automatically
send security findings to their bug tracking system?

Additional support for this metric again comes from research from the Veracode State of
Software Security report, which recently found that those organizations that scan via API
shorten the time to address half their security flaws by 17.5 days.

Are developers fixing what they find?
Simply finding software vulnerabilities is not the end goal; fixing flaws is. Figure 6 illustrates
total number of findings closed divided by total number of findings that were open. This is
especially useful to look at by team or business unit to compare AppSec adoption, as well
as by category to help understand where training or resourcing investment is needed.

Note that developer participation in AppSec also requires an executive mandate
and buy-in from the CTO. Establishing buy-in at that level from the outset is critical.

Figure 5
Determine whether
security is integrated into
development processes

Figure 6
Find out how effectively
teams are resolving
security findings

https://www.veracode.com/state-of-software-security-report
https://www.veracode.com/state-of-software-security-report

9C O M M U N I C AT I N G A P P L I C AT I O N S E C U R I T Y S U C C E S S TO YO U R E X E C U T I V E L E A D E R S H I P

Is early testing reducing later findings?
When trying to prove the success of an AppSec program to an executive team, one key
metric is the correlation between security activities early in the development process
and the number of security flaws found in a release candidate or in production.

This metric supports the hypothesis at the core of most AppSec programs — it is more
cost-effective and efficient to reduce risk to your organization by closing security findings
early rather than delaying time to production.

For example, Figure 7 shows the relationship between security testing early in the
development process, in the individual IDE of a software developer, and the number
of flaws found in the release candidate.

How Do I Prove That
My AppSec Program Is
Making Us More Secure?
There is often a misconception that AppSec is one tool or one project
with a finish line, creating confusion about results and outcomes.
In reality, it’s a process, not a project. Rather than a one-off initiative,
effective application security is ultimately a component of the software
development process, just like QA, and the measures of success need
to reflect that. Use the following metrics both to guide the progress of
your program and to illustrate its progress and success to executives.

3
“If you can’t describe what you are doing as a
process, you don’t know what you’re doing.
W EDWARDS DEMING

1 0C O M M U N I C AT I N G A P P L I C AT I O N S E C U R I T Y S U C C E S S TO YO U R E X E C U T I V E L E A D E R S H I P

Figure 7 (based on real Veracode customer data from an organization with 1,200 developers)
clearly highlights the success of an application security program by depicting the correlation
between scanning for security in the IDE and security flaws found just before production.
This customer has incorporated security analysis early in the development pipeline, where
it becomes a form of security training for developers, both alerting to and educating on
security vulnerabilities — ultimately preventing both immediate and future security flaws.
As the IDE scanning ramps up (yellow bars), the flaws in the release candidate go down
(blue bars), reducing risk when that candidate hits production.

A developer provided the direct feedback that, “[Performing security testing early in the
IDE helps with] learning how to identify and avoid potential issues in the first place. Such
as avoiding common, but less obvious highly insecure patterns like SQL Injection and XSS
(Cross-Site Scripting).”

Ultimately, this “early testing vs. later flaws” metric is effective because it addresses an
area that has been particularly challenging for security professionals — proving that change
in the development process is having a positive impact. It illustrates how those changes are
having a downstream effect on reducing the costly exercise of fixing security flaws
in production.

20,000

17,500

15,000

12,500

10,000

7,500

5,000

2,500

0

8

6

4

2

0

20
18

-0
9

20
18

-1
0

20
18

-1
1

20
18

-1
2

20
19

-0
1

20
19

-0
2

20
19

-0
3

20
19

-0
4

FIRST FOUND MONTH

R
U

N
N

IN
G

 AVER
AG

E O
F ID

E SCAN
S P

ER
 M

O
N

TH

R
U

N
N

IN
G

 A
VE

R
AG

E
O

F
N

EW
 S

AS
T

FI
N

D
IN

G
S

AT
 R

EL
EA

SE
 G

AT
E

20
19

-0
5

20
19

-0
6

20
19

-0
7

20
19

-0
8

20
19

-0
9

20
19

-1
0

20
19

-1
1

20
19

-1
2

20
20

-0
1

20
20

-0
2

20
20

-0
3

20
20

-0
4

20
20

-0
5

20
20

-0
6

20
20

-0
7

20
20

-0
8

20
20

-0
9

Running Average of IDE Scans per Month Running Average of New SAST Findings at Release Gate

Figure 7
Impact of IDE
scans on flaws in
release candidate

NOTE

This metric can be a challenge for organizations just starting an application security
program. Although the metric above is attainable for any organization of any size, those
just starting out will want to kick off their programs with activities that will quickly reduce
risk and see positive results. That early start point is typically relying on static analysis as
a release gate. In this case, you won’t have two metrics to measure and compare. You will
only have the one measurement — number of flaws in each release/number of releases
blocked. In this instance, it would be useful to look at time as a dimension: are you seeing
fewer flaws over time? Is the team fixing more than they are finding? Are releases blocked
less often? This is not nearly as compelling, and in these cases, other metrics, such as
policy compliance or peer comparison, may be more appropriate.

1 1C O M M U N I C AT I N G A P P L I C AT I O N S E C U R I T Y S U C C E S S TO YO U R E X E C U T I V E L E A D E R S H I P

Figure 8
Compare the number
of security findings
to number of closed
security findings

Figure 9
Security debt is the
result of opening more
flaws than closing

Figure 10
Mean time to resolve

Are we fixing more security flaws than we find?
Figure 8 illustrates whether the organization is resolving more security findings than it is
identifying. If the company is closing more flaws than it is locating, it is truly reducing risk,
rather than just adding to a tech debt backlog (as in Figure 9).

LIMIT = 450

0 150 300 450 600

Open
Findings

TARGET = 2700

0 750 1500 2250 3000

Closed
Findings

JAN ’19 MAY ’19 SEPT ’19 JAN ’20 MAY ’20

Closed Flaws Open Vulnerabilities

0

10000

20000

30000

40000

5 2

Are we fixing security flaws quickly?
Figure 10 illustrates the average time to address security findings. The standard definition
for mean time to resolve (MTTR) is corrective maintenance time/total number of corrective
maintenance actions. MTTR is key for motivating teams in the spirit of continuous
improvement. Keep in mind that this metric is highly dependent on the context of your
organization. If you have an internal-facing legacy system, an average time to resolve for
that application of 30 days may be great. If you have an external application that handles
your PII, five days may be too long for your average time to resolve.

Average Days to
Resolve All Findings

Average Days to
Resolve Policy Findings

1 2C O M M U N I C AT I N G A P P L I C AT I O N S E C U R I T Y S U C C E S S TO YO U R E X E C U T I V E L E A D E R S H I P

Are our apps passing security policy?
The percent of applications in your AppSec program that are in compliance with your
AppSec policy is a clear and concise way to prove AppSec success.

What percentage
of my applications
are passing policy?

PASS

52.24%

DID NOT PASS

33.58%

CONDITIONAL PASS

0%

NOT ASSESSED

14.18%

However, the success of this metric depends on whether you have established the right
policy for your organization. For instance, if security is being introduced or enforced for the
first time, begin with some achievable policy standards. Start with a simple policy: no high
or very high critical flaws. Then get more stringent over time as developers adopt security
into their daily routine. As the security assessments and remediation become part of the
development process and developers become more accustomed to remediation, policies
that aim to comply with PCI or OWASP requirements become more realistic rather than
at the beginning.

In addition, not all apps are created equal, so create different requirements for different
apps. For instance, an application that has IP or is public-facing may require all medium
to very critical flaws to be fixed. A one-page temporary marketing site may only require
high/very high flaws to be fixed.

Figure 11
Determine whether
your applications are
passing policy

Be sure to provide executives with context when policy metrics
are presented by including targets.

1 3C O M M U N I C AT I N G A P P L I C AT I O N S E C U R I T Y S U C C E S S TO YO U R E X E C U T I V E L E A D E R S H I P

Are we spending less pen testing dollars?
You could look at the relationship between security assessments and security training early
in the development cycle and the results of pen testing in production. But keep in mind that
pen testing will always find flaws that automated scanning will not, so simply measuring the
number of pen testing findings might not be adequate.

As you increase the amount of security testing earlier in development, you should, however,
see a difference in the types of flaws found by pen testers. In other words, you won’t be
wasting expensive pen testing dollars on flaws that automated scans could have picked up.
You’ll be optimizing your pen testing budget on complicated flaws that truly need a human
eye to identify.

While pen testing is an important security check, remember that the results are a point
in time only. Automated scanning allows for an iterative approach to security checks
continuously throughout the development process.

A Veracode pen tester recently wrote a blog post that speaks to this issue. He points
out that he regularly spends time on vulnerabilities that are easily and less expensively
identified and remediated in the development phase. Using a pen tester’s time to work on
these vulnerabilities is much less efficient, and much more expensive. You could illustrate
AppSec success by comparing the number of early security tests (as in Figure 7) with the
types of flaws identified by pen testers. You should see a difference in types found as the
number of tests in the IDE increases.

PEN TESTING

Pen testing is best used to find and exploit business logic or architectural flaws, conduct
manual exploitation of vulnerabilities to show business impact (i.e., extract data from a
SQL Injection vulnerability), and to provide real-world attacker simulation.

AUTOMATION

Automation is ideal for finding commonly “known” vulnerabilities. For instance, input
validation flaws like XSS and SQL Injection can be easily found with automation. But for
more complex flaws, such as Insecure Direct Object References (IDOR), automation has
a hard time understanding the “logic” behind these types of flaws, which is why manual
testing is recommended in addition to automation.

https://www.veracode.com/blog/secure-development/top-five-web-application-authentication-vulnerabilities-we-find

1 4C O M M U N I C AT I N G A P P L I C AT I O N S E C U R I T Y S U C C E S S TO YO U R E X E C U T I V E L E A D E R S H I P

Is our AppSec program as effective as our peers’?
Another powerful metric to consider to communicate AppSec success to executives is peer
benchmarking. Provide executives with a frame of reference using the state of software
security among peers and the comparison to the current state. For example, Veracode’s
annual State of Software Security report analyzes software security data by industry, and
you can compare your numbers to others in your industry and all other Veracode customers.
See the chart below as an example. While this customer is scanning only a few times a year,
those applications that are scanned more frequently have a much faster time to resolve.
So, the recommendation would be to move more applications to a more frequent scanning
cadence, and (hopefully) the customer would see an even faster time to resolve — like other
customers in their industry and in the market overall.

Does DevSecOps drive faster fixing?
Effect of scan frequency on fix rate
and time-to-remediation

In general, we expect a DevOps-oriented
 team to conduct frequent security scans
of their code at regular intervals during
the development lifecycle. Furthermore,
we’d hope to see evidence that those
behaviors correlate with faster fix timelines.
This chart to the right provides visibility
into where this is true.

How often are applications tested?
Frequency of security scanning
across applications

More frequent scanning correlates
with a marked improvement in
remediation timeframes. With
this in mind, the chart to the right
provides insight into how frequently
applications are tested.

1–12
Scans

13–52
Scans

53–260
Scans

261+
Scans

0 5 10 15 20 25 30 35 40 45

E�ect of Scan Frequency on Median Time to Resolve

50

MEDIAN TIME-TO-REMEDIATION

55 60 65 70 75 80 85 90 95 100 105

All Industry Account

40%

30%

20%

10%

0%
1

Scan
2–6
Scans

7–12
Scans

13–26
Scans

27–52
Scans

53–130
Scans

131–260
Scans

261+
Scans

Frequency of Security Scanning Across Applications

SCANS PER YEAR

PE
RC

EN
T

O
F

AP
PL

IC
AT

IO
N

S

All Industry Account

Figure 12
AppSec peer benchmarking

https://www.veracode.com/state-of-software-security-report

1 5C O M M U N I C AT I N G A P P L I C AT I O N S E C U R I T Y S U C C E S S TO YO U R E X E C U T I V E L E A D E R S H I P

Defining AppSec vs. other security technologies
Level set on what application security is. For instance, explain that unlike other security
solutions, like a WAF, application security is not a tool, but an ongoing program integrated
into product development. This program involves changing developer behavior and
processes, and risk will not reduce overnight. Over time, security needs to become
something that is owned and managed by the development team, just like they own quality
testing and scalability. Application security is also more heavily focused on prevention than
other security technologies and is therefore often not as easy to quantify. Prevention is
always a “tougher sell,” in security, and in other areas of life. Take fire safety: Teaching your
children not to play with matches is just as important in fighting fires as a fire extinguisher,
but it’s easy to point to the number of fires you put out with the fire extinguisher. It’s less
black and white to quantify the increase in safety from educating your children. How many
fires did you prevent by explaining the danger of matches and keeping them out of reach?

In terms of application security, it’s important to drive home the point that the least
expensive security flaw to address is the one that is never created, and the least disruptive
vulnerability is the one that is never exploited. You won’t see immediate and dramatic
numbers of breaches thwarted, but you will see, over time, fewer entry points for
cyberattackers in your production code.

Successful application security programs are about more than tools. They are also about
more than blocking cyberattacks. Rather, they educate developers on creating secure
code and also enable them to test code for security while writing it. In addition, they test
code for security vulnerabilities at each stage of the development process, from coding
to production. Finally, successful programs incorporate remediation guidance so that the
output is not simply identification of flaws, but remediation of them.

How Do I Frame the Story
of Our AppSec Success?

Because of the nature of
application security, simply
presenting a set of metrics
might not be adequate
to convey success. You
may need to add further
context and background
to tell the story of your
AppSec progress.

FOR EXAMPLE

1 6C O M M U N I C AT I N G A P P L I C AT I O N S E C U R I T Y S U C C E S S TO YO U R E X E C U T I V E L E A D E R S H I P

Start by defining what good looks like — where should we be headed
based on our application landscape and risk tolerance? Then explain which stage

of maturity you are in, the different phases of the program that you will go through
to reach the end goal, and what the metrics look like at each phase.

Outlining the roadmap for your program,
and what the goals are at each stage

For example, a company that is just
starting out with AppSec will likely need
to spend time on the following metrics:

Identifying applications for program
inclusion based on risk posture and design

How many applications are in the initial scope?

Working with developers to initiate scans
and setting up integrations to pull scan
results into the appropriate ticketing
system to ensure visibility

How many applications have been scanned
at least once?

Are the scan results available for the appropriate
dev team to action alongside the other bugs in
their backlog?

How many applications have been rescanned?

 Setting an achievable security policy
and remediate timeline

How many findings have been disallowed
by policy?

How many findings are outside of their
grace period for remediation?

A company that has invested heavily
in AppSec will be likely looking at
the following metrics:

Do all new development projects and
applications include a security design
review and assign the appropriate security
policy based on risk posture and design?

Do all active dev projects have security
testing integrated into their pipelines?

Is a security scan required as part of the
release process? Does a failed security
scan break the release to production?

How quickly are developers closing
findings that impact policy? Are there
trends in certain CWE types or categories
that may suggest training improvements?

1

2

3

1

2

3

4

FOR EXAMPLE

1 7C O M M U N I C AT I N G A P P L I C AT I O N S E C U R I T Y S U C C E S S TO YO U R E X E C U T I V E L E A D E R S H I P

Answering “what does good look like?”
can be challenging in application security.

We hope the guidance in this
paper helps shape and promote
your program and ultimately
reduce your organization’s risk.

CONCLUSION

Even after security
professionals make the
case and secure funding
for an AppSec investment,
explaining what application
security success looks like
and proving the effectiveness
of their program is not easy.

The members of the Veracode Customer Advisory Board came together to address this
challenge and provide some answers. Using their collective experiences managing a
diverse set of application security programs, they established a set of metrics that should
help AppSec managers at organizations of any size and in any industry communicate
the effectiveness of their programs. The CAB working group ultimately decided that
communicating AppSec success relies on metrics that establish that the program is
necessary, is being adopted, and is truly reducing risk. In addition, they found that
the metrics alone are often not enough, and require the right context in order to
communicate AppSec success effectively.

Veracode is the leading AppSec partner for creating secure software, reducing the risk of security breach and increasing security and development
teams’ productivity. As a result, companies using Veracode can move their business, and the world, forward. With its combination of automation,
integrations, process, and speed, Veracode helps companies get accurate and reliable results to focus their efforts on fixing, not just finding, potential
vulnerabilities. Veracode serves more than 2,500 customers worldwide across a wide range of industries. The Veracode cloud platform has assessed
more than 14 trillion lines of code and helped companies fix more than 46 million security flaws.

www.veracode.com Veracode Blog Twitter

Copyright © 2020 Veracode, Inc. All rights reserved. All other brand names, product names, or trademarks belong to their respective holders.

PLEASE CONTACT US WITH
QUESTIONS ABOUT THIS
CONTENT OR OUR CUSTOMER
ADVISORY BOARD.

https://www.veracode.com/
https://www.veracode.com/blog
https://twitter.com/Veracode
https://info.veracode.com/web-contact-us.html?utm_source=main_navigation&utm_medium=website
https://info.veracode.com/web-contact-us.html?utm_source=main_navigation&utm_medium=website
https://info.veracode.com/web-contact-us.html?utm_source=main_navigation&utm_medium=website
https://info.veracode.com/web-contact-us.html?utm_source=main_navigation&utm_medium=website

